Chang Haowu, Zhang Hao, Zhang Tianyue, Su Lingtao, Qin Qing-Ming, Li Guihua, Li Xueqing, Wang Li, Zhao Tianheng, Zhao Enshuang, Zhao Hengyi, Liu Yuanning, Stacey Gary, Xu Dong
Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China.
Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.
Front Plant Sci. 2022 Apr 7;13:860791. doi: 10.3389/fpls.2022.860791. eCollection 2022.
Although growing evidence shows that microRNA (miRNA) regulates plant growth and development, miRNA regulatory networks in plants are not well understood. Current experimental studies cannot characterize miRNA regulatory networks on a large scale. This information gap provides an excellent opportunity to employ computational methods for global analysis and generate valuable models and hypotheses. To address this opportunity, we collected miRNA-target interactions (MTIs) and used MTIs from and to predict homologous MTIs in soybeans, resulting in 80,235 soybean MTIs in total. A multi-level iterative bi-clustering method was developed to identify 483 soybean miRNA-target regulatory modules (MTRMs). Furthermore, we collected soybean miRNA expression data and corresponding gene expression data in response to abiotic stresses. By clustering these data, 37 MTRMs related to abiotic stresses were identified, including stress-specific MTRMs and shared MTRMs. These MTRMs have gene ontology (GO) enrichment in resistance response, iron transport, positive growth regulation, etc. Our study predicts soybean MTRMs and miRNA-GO networks under different stresses, and provides miRNA targeting hypotheses for experimental analyses. The method can be applied to other biological processes and other plants to elucidate miRNA co-regulation mechanisms.
尽管越来越多的证据表明微小RNA(miRNA)调控植物的生长发育,但植物中的miRNA调控网络尚未得到很好的理解。当前的实验研究无法大规模地表征miRNA调控网络。这一信息缺口为采用计算方法进行全局分析并生成有价值的模型和假设提供了绝佳机会。为了利用这一机会,我们收集了miRNA-靶标相互作用(MTIs),并使用来自[具体来源1]和[具体来源2]的MTIs来预测大豆中的同源MTIs,总共得到了80,235个大豆MTIs。我们开发了一种多级迭代双聚类方法来识别483个大豆miRNA-靶标调控模块(MTRMs)。此外,我们收集了大豆在非生物胁迫下的miRNA表达数据和相应的基因表达数据。通过对这些数据进行聚类,识别出了37个与非生物胁迫相关的MTRMs,包括胁迫特异性MTRMs和共享MTRMs。这些MTRMs在抗性反应、铁运输、正向生长调控等方面具有基因本体(GO)富集。我们的研究预测了不同胁迫下的大豆MTRMs和miRNA-GO网络,并为实验分析提供了miRNA靶向假设。该方法可应用于其他生物过程和其他植物,以阐明miRNA的协同调控机制。