Suppr超能文献

细菌视紫红质的偏振傅里叶变换红外光谱。跨膜α螺旋对氢/氘交换具有抗性。

Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange.

作者信息

Earnest T N, Herzfeld J, Rothschild K J

机构信息

Department of Physics, Boston University, Massachusetts 02115.

出版信息

Biophys J. 1990 Dec;58(6):1539-46. doi: 10.1016/S0006-3495(90)82498-X.

Abstract

The secondary structure of bacteriorhodopsin has been investigated by polarized Fourier transform infrared spectroscopy combined with hydrogen/deuterium exchange, isotope labeling and resolution enhancement methods. Oriented films of purple membrane were measured at low temperature after exposure to H2O or D2O. Resolution enhancement techniques and isotopic labeling of the Schiff base were used to assign peaks in the amide I region of the spectrum. alpha-helical structure, which exhibits strong infrared dichroism, undergoes little H/D exchange, even after 48 h of D2O exposure. In contrast, non-alpha-helical structure, which exhibits little dichroism, undergoes rapid H/D exchange. A band at 1,640 cm-1, which has previously been assigned to beta-sheet structure, is found to be due in part to the C = N stretching vibration of protonated Schiff base of the retinylidene chromophore. We conclude that the membrane spanning regions of bR consist predominantly of alpha-helical structure whereas most beta-type structure is located in surface regions directly accessible to water.

摘要

通过偏振傅里叶变换红外光谱结合氢/氘交换、同位素标记和分辨率增强方法,对细菌视紫红质的二级结构进行了研究。将紫色膜的定向膜在暴露于H₂O或D₂O后于低温下进行测量。使用分辨率增强技术和席夫碱的同位素标记来确定光谱酰胺I区域中的峰。表现出强烈红外二色性的α-螺旋结构,即使在暴露于D₂O 48小时后,H/D交换也很少。相比之下,表现出很少二色性的非α-螺旋结构则经历快速的H/D交换。发现先前被指定为β-折叠结构的1640 cm⁻¹处的谱带部分归因于视黄叉发色团质子化席夫碱的C = N伸缩振动。我们得出结论,细菌视紫红质的跨膜区域主要由α-螺旋结构组成,而大多数β型结构位于可直接接触水的表面区域。

相似文献

2
Conformational changes in the core structure of bacteriorhodopsin.
Biochemistry. 1998 Jul 14;37(28):10279-85. doi: 10.1021/bi9802465.
3
8
Fourier transform infrared analysis of bacteriorhodopsin secondary structure.
Biochemistry. 1992 Dec 15;31(49):12363-8. doi: 10.1021/bi00164a010.

引用本文的文献

1
A photoswitchable helical peptide with light-controllable interface/transmembrane topology in lipidic membranes.
iScience. 2021 Jun 24;24(7):102771. doi: 10.1016/j.isci.2021.102771. eCollection 2021 Jul 23.
3
Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches.
Nano Lett. 2019 May 8;19(5):3104-3114. doi: 10.1021/acs.nanolett.9b00512. Epub 2019 Apr 17.
4
Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins.
J Biomol NMR. 2015 Dec;63(4):375-388. doi: 10.1007/s10858-015-9997-5. Epub 2015 Oct 22.
5
Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy.
J Phys Chem B. 2013 Nov 27;117(47):14625-34. doi: 10.1021/jp408064b. Epub 2013 Nov 14.
6
Helical membrane protein conformations and their environment.
Eur Biophys J. 2013 Oct;42(10):731-55. doi: 10.1007/s00249-013-0925-x. Epub 2013 Sep 1.
7
2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity.
J Phys Chem B. 2013 Dec 12;117(49):15297-305. doi: 10.1021/jp402942s. Epub 2013 May 23.
8
Evidence for unbenignant nature of glucose as a replacement for water in purple membranes.
Biophys J. 1993 May;64(5):1434-44. doi: 10.1016/S0006-3495(93)81510-8.
9
Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability.
Biophys J. 2008 May 1;94(9):3647-58. doi: 10.1529/biophysj.107.113258. Epub 2008 Jan 30.

本文引用的文献

2
Vibrational analysis of peptides, polypeptides, and proteins: Characteristic amide bands of beta-turns.
Proc Natl Acad Sci U S A. 1979 Feb;76(2):774-7. doi: 10.1073/pnas.76.2.774.
3
Projected structure of purple membrane determined to 3.7 A resolution by low temperature electron microscopy.
J Mol Biol. 1981 Sep 25;151(3):491-517. doi: 10.1016/0022-2836(81)90007-3.
4
A spectroscopic study of rhodopsin alpha-helix orientation.
Biophys J. 1980 Jul;31(1):53-64. doi: 10.1016/S0006-3495(80)85040-5.
5
Peptide-chain secondary structure of bacteriorhodopsin.
Biophys J. 1983 Jul;43(1):81-9. doi: 10.1016/S0006-3495(83)84326-4.
6
Resonance Raman spectroscopy of specifically [epsilon-15N]lysine-labeled bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1981 Mar;78(3):1643-6. doi: 10.1073/pnas.78.3.1643.
8
Bacteriorhodopsin and related pigments of halobacteria.
Annu Rev Biochem. 1982;51:587-616. doi: 10.1146/annurev.bi.51.070182.003103.
9
Infrared spectrum of the purple membrane: clue to a proton conduction mechanism?
Science. 1982 Apr 23;216(4544):407-8. doi: 10.1126/science.6280277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验