Suppr超能文献

无方程分析二组分系统信号模型揭示了在不存在多稳态的情况下共存表型的出现。

Equation-free analysis of two-component system signalling model reveals the emergence of co-existing phenotypes in the absence of multistationarity.

机构信息

Department of Mathematics, University of Surrey, Guildford, United Kingdom.

出版信息

PLoS Comput Biol. 2012;8(6):e1002396. doi: 10.1371/journal.pcbi.1002396. Epub 2012 Jun 28.

Abstract

Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient excursions from a stable state to an unstable excited state, and the switching on and off of a reaction network according to the availability of a constituent chemical species. Here we analyse a detailed stochastic kinetic model of two-component system signalling in bacteria, and show that alternative phenotypes emerge in the absence of these features. We perform a bifurcation analysis of deterministic reaction rate equations derived from the model, and find that they cannot reproduce the whole range of qualitative responses to external signals demonstrated by direct stochastic simulations. In particular, the mixed mode, where stochastic switching and a graded response are seen simultaneously, is absent. However, probabilistic and equation-free analyses of the stochastic model that calculate stationary states for the mean of an ensemble of stochastic trajectories reveal that slow transcription of either response regulator or histidine kinase leads to the coexistence of an approximate basal solution and a graded response that combine to produce the mixed mode, thus establishing its essential stochastic nature. The same techniques also show that stochasticity results in the observation of an all-or-none bistable response over a much wider range of external signals than would be expected on deterministic grounds. Thus we demonstrate the application of numerical equation-free methods to a detailed biochemical reaction network model, and show that it can provide new insight into the role of stochasticity in the emergence of phenotypic diversity.

摘要

在相同的环境条件下,具有相同遗传基因的细胞表现型的差异归因于生化过程固有的随机性。已经提出了各种机制,包括调节网络中存在通过随机波动达到的替代稳定状态,从稳定状态到不稳定激发态的长时间瞬态偏离,以及根据组成化学物质的可用性打开和关闭反应网络。在这里,我们分析了细菌中两种成分系统信号的详细随机动力学模型,并表明在不存在这些特征的情况下会出现替代表型。我们对从该模型得出的确定性反应速率方程进行了分叉分析,发现它们无法重现直接随机模拟所展示的对外部信号的全范围定性响应。特别是,不存在混合模式,其中随机切换和分级响应同时出现。然而,对随机模型进行的概率和无方程分析计算了随机轨迹集合的平均值的静态状态,表明响应调节剂或组氨酸激酶的转录缓慢导致近似基础解和分级响应的共存,从而产生混合模式,从而确立了其基本的随机性。同样的技术还表明,与确定性基础相比,随机性导致在更宽的外部信号范围内观察到全或无双稳态响应。因此,我们展示了数值无方程方法在详细生化反应网络模型中的应用,并表明它可以为随机性在表型多样性出现中的作用提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed06/3386199/40b0ce4da612/pcbi.1002396.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验