Suppr超能文献

快速、自动化实现多相位兴奋性突触后电流的时间精确盲去卷积。

Fast, automated implementation of temporally precise blind deconvolution of multiphasic excitatory postsynaptic currents.

机构信息

Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, United States of America.

出版信息

PLoS One. 2012;7(6):e38198. doi: 10.1371/journal.pone.0038198. Epub 2012 Jun 26.

Abstract

Records of excitatory postsynaptic currents (EPSCs) are often complex, with overlapping signals that display a large range of amplitudes. Statistical analysis of the kinetics and amplitudes of such complex EPSCs is nonetheless essential to the understanding of transmitter release. We therefore developed a maximum-likelihood blind deconvolution algorithm to detect exocytotic events in complex EPSC records. The algorithm is capable of characterizing the kinetics of the prototypical EPSC as well as delineating individual release events at higher temporal resolution than other extant methods. The approach also accommodates data with low signal-to-noise ratios and those with substantial overlaps between events. We demonstrated the algorithm's efficacy on paired whole-cell electrode recordings and synthetic data of high complexity. Using the algorithm to align EPSCs, we characterized their kinetics in a parameter-free way. Combining this approach with maximum-entropy deconvolution, we were able to identify independent release events in complex records at a temporal resolution of less than 250 µs. We determined that the increase in total postsynaptic current associated with depolarization of the presynaptic cell stems primarily from an increase in the rate of EPSCs rather than an increase in their amplitude. Finally, we found that fluctuations owing to postsynaptic receptor kinetics and experimental noise, as well as the model dependence of the deconvolution process, explain our inability to observe quantized peaks in histograms of EPSC amplitudes from physiological recordings.

摘要

兴奋性突触后电流 (EPSC) 的记录通常很复杂,具有重叠的信号,其幅度范围很大。然而,对这种复杂 EPSC 的动力学和幅度进行统计分析对于理解递质释放是至关重要的。因此,我们开发了一种最大似然盲解卷积算法来检测复杂 EPSC 记录中的胞吐事件。该算法能够描述原型 EPSC 的动力学,并以比其他现有方法更高的时间分辨率描绘单个释放事件。该方法还适用于具有低信噪比和事件之间存在大量重叠的数据。我们在成对的全细胞电极记录和高复杂度的合成数据上验证了该算法的功效。使用该算法对齐 EPSC,我们以无参数的方式描述了它们的动力学。通过将这种方法与最大熵反卷积相结合,我们能够以小于 250µs 的时间分辨率识别复杂记录中的独立释放事件。我们确定与前一个细胞去极化相关的总突触后电流的增加主要来自于 EPSC 速率的增加,而不是其幅度的增加。最后,我们发现,由于突触后受体动力学和实验噪声的波动,以及反卷积过程的模型依赖性,解释了我们无法在生理记录的 EPSC 幅度直方图中观察到量化峰的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3b3/3383690/021ce5001f93/pone.0038198.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验