Suppr超能文献

基本残基 R260 和 K357 影响主要易化超家族多药转运蛋白 LmrP 的构象动力学。

Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP.

机构信息

Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS One. 2012;7(6):e38715. doi: 10.1371/journal.pone.0038715. Epub 2012 Jun 20.

Abstract

Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H(+)(Na(+)) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by components of the proton-motive force, the mutations also influence the energetics of transport.

摘要

次级主动多药转运体可以通过介导其通过底物/H(+)(Na(+))反向转运从细胞内靶标中排出,从而使细胞对药物产生耐药性。虽然已经对这些转运体中的催化羧酸与偶联离子和底物(药物)的相互作用进行了一些详细的研究,但碱性残基的功能重要性却受到了较少的关注。在乳球菌 lactis 中的主要易化因子超家族转运体 LmrP 的跨膜螺旋中的两个碱性残基 R260 和 K357 位于蛋白质的外表面,它们暴露于质膜的外层(R260)和内层(K357)的磷脂头部基团区域。尽管我们对质子动力势依赖性和底物转运动力学的观察以及底物依赖性质子转运表明,与野生型 LmrP 相比,K357A 和 R260A 突变体在 ethidium-proton 和 benzalkonium-proton 反向转运中受到影响,但我们的发现表明 R260 和 K357 不直接参与底物结合或质子转运。次级主动多药转运体被认为通过一种机制起作用,其中底物结合位点交替暴露于膜的每一侧。用 LmrP 的双半胱氨酸突变体进行二硫键交联实验,该突变体报告了具有高底物结合亲和力的从外向状态到内向状态的底物刺激转换。在实验中,发现 R260A 和 K357A 突变影响了这些主要蛋白质构象在运输循环中的动力学,这可能是通过去除 R260 和 K357 与磷脂和/或 LmrP 中的其他残基的相互作用。因此,R260A 和 K357A 突变修饰了运输循环可以运行的最大速率,并且由于构象状态之间的转换受到质子动力势成分的不同影响,因此突变也影响了运输的能量学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验