Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
Sci Rep. 2016 Dec 5;6:38052. doi: 10.1038/srep38052.
The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catalyses drug efflux in a membrane potential and chemical proton gradient-dependent fashion. To enable the interaction with protons and cationic substrates, LmrP contains catalytic carboxyl residues on the surface of a large interior chamber that is formed by transmembrane helices. These residues co-localise together with polar and aromatic residues, and are predicted to be present in two clusters. To investigate the functional role of the catalytic carboxylates, we generated mutant proteins catalysing membrane potential-independent dye efflux by removing one of the carboxyl residues in Cluster 1. We then relocated this carboxyl residue to six positions on the surface of the interior chamber, and tested for restoration of wildtype energetics. The reinsertion at positions towards Cluster 2 reinstated the membrane potential dependence of dye efflux. Our data uncover a remarkable plasticity in proton interactions in LmrP, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport.
多药外排膜转运蛋白的表达是细胞获得对结构不同的抗生素和细胞毒性药物的耐药性的一个重要机制。这些转运蛋白通过介导药物从细胞包膜的外排作用,将细胞内药物浓度降低至亚毒性水平。乳球菌 lactis 的主要易化因子超家族多药转运蛋白 LmrP 以膜电位和化学质子梯度依赖的方式催化药物外排。为了能够与质子和阳离子底物相互作用,LmrP 在由跨膜螺旋形成的大型内部腔的表面上包含催化羧基残基。这些残基与极性和芳香族残基共同定位,并且预测存在于两个簇中。为了研究催化羧基的功能作用,我们通过去除簇 1 中的一个羧基残基生成了催化膜电位非依赖性染料外排的突变蛋白。然后,我们将该羧基残基重新插入到内部腔表面的六个位置,并测试了恢复野生型能量学的情况。在靠近簇 2 的位置重新插入恢复了染料外排的膜电位依赖性。我们的数据揭示了 LmrP 中质子相互作用的显著灵活性,这是负责质子/多药反向转运的关键残基位置灵活性的结果。