Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
PLoS One. 2012;7(6):e39754. doi: 10.1371/journal.pone.0039754. Epub 2012 Jun 28.
Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB), and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB). Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR) of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven) and gyrB (nineteen) to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies among the different mutations. The results from this study provide support for the inclusion of the QRDR of gyrB in molecular assays used to detect fluoroquinolone resistance in M. tuberculosis.
氟喹诺酮类抗生素是治疗耐多药结核病(MDR-TB)的最有效二线药物之一,而对这类抗生素的耐药性是定义广泛耐药结核病(XDR-TB)的一个标准。结核分枝杆菌中的氟喹诺酮类药物耐药性与喹诺酮类耐药决定区(QRDR)中 gyrA 的修饰有关。最近的研究表明,gyrB 中的氨基酸取代也可能在耐药性中起关键作用,但结核分枝杆菌中这些突变的功能遗传研究尚缺乏。在这项研究中,我们检查了 gyrase 基因 gyrA(七个)和 gyrB(十九个)中的 26 个突变,以确定这些突变在氟喹诺酮类药物耐药性中的临床相关性和作用。携带 T80A、T80A+A90G、A90G、G247S 和 A384V gyrA 突变的转导子或临床分离株对所有测试的氟喹诺酮类药物均敏感。A74S 突变对莫西沙星表现出低水平耐药性,但对环丙沙星、左氧氟沙星和氧氟沙星敏感,而 A74S+D94G 双突变对所有测试的氟喹诺酮类药物均表现出交叉耐药性。gyrB 的功能遗传分析和结构建模表明,M330I、V340L、R485C、D500A、D533A、A543T、A543V 和 T546M 突变不足以确定琼脂比例确定的耐药性。只有三个突变,N538D、E540V 和 R485C+T539N,在至少一种遗传背景下赋予了对所有四种氟喹诺酮类药物的耐药性。D500H 和 D500N 突变仅赋予对左氧氟沙星和氧氟沙星的耐药性,而 N538K 和 E540D 仅一致赋予对莫西沙星的耐药性。携带 T539N、T539P 或 N538T+T546M 突变的转导子和临床分离株仅对莫西沙星表现出低水平耐药性,但并不一致。这些发现表明,gyrB 中的某些突变赋予氟喹诺酮类药物耐药性,但不同突变之间的耐药水平和模式有所不同。这项研究的结果为在结核分枝杆菌中检测氟喹诺酮类药物耐药性的分子检测中包含 gyrB 的 QRDR 提供了支持。