Suppr超能文献

荷电水化不对称性:基本原理以及如何利用它来检验和改进水模型。

Charge hydration asymmetry: the basic principle and how to use it to test and improve water models.

机构信息

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.

出版信息

J Phys Chem B. 2012 Aug 16;116(32):9776-83. doi: 10.1021/jp305226j. Epub 2012 Aug 7.

Abstract

Charge hydration asymmetry (CHA) manifests itself in the experimentally observed strong dependence of free energy of ion hydration on the sign of the ion charge. This asymmetry is not consistently accounted for by popular models of solvation; its magnitude varies greatly between the models. While it is clear that CHA is somehow related to charge distribution within a water molecule, the exact nature of this relationship is unknown. We propose a simple, yet general and rigorous criterion that relates rotational and charge inversion properties of a water molecule's charge distribution with its ability to cause CHA. We show which electric multipole components of a water molecule are key to explain its ability for asymmetric charge hydration. We then test several popular water models and explain why specific models show none, little, or strong CHA in simulations. We use the gained insight to derive an analogue of the Born equation that includes the missing physics necessary to account for CHA and does not rely on redefining the continuum dielectric boundary. The proposed formula is as simple as the original, does not contain any fitting parameters, and predicts hydration free energies and entropies of spherical cations and anions within experimental uncertainty. Our findings suggest that the gap between the practical continuum electrostatics framework and the more fundamental explicit solvent treatment may be reduced considerably by explicitly introducing CHA into the existing continuum framework.

摘要

电荷水合不对称性 (CHA) 表现在实验观察到的离子水合自由能强烈依赖于离子电荷的符号上。这种不对称性在流行的溶剂化模型中并没有得到一致的解释;其大小在不同模型之间差异很大。虽然很明显,CHA 与水分子内的电荷分布有关,但这种关系的确切性质尚不清楚。我们提出了一个简单但通用且严格的准则,将水分子的电荷分布的旋转和电荷反转性质与其引起 CHA 的能力联系起来。我们展示了水分子的哪些电多极子成分是解释其不对称电荷水合能力的关键。然后,我们测试了几种流行的水分子模型,并解释了为什么特定的模型在模拟中显示出没有、很少或强烈的 CHA。我们利用获得的洞察力推导出一个包含解释 CHA 所需的缺失物理但不依赖于重新定义连续介电边界的 Born 方程的类似物。所提出的公式与原始公式一样简单,不包含任何拟合参数,并在实验不确定度内预测球形阳离子和阴离子的水合自由能和熵。我们的研究结果表明,通过将 CHA 明确引入现有的连续体框架中,实际连续体静电学框架和更基本的显式溶剂处理之间的差距可能会大大缩小。

相似文献

2
Accurate evaluation of charge asymmetry in aqueous solvation.水溶剂化中电荷不对称性的准确评估。
J Phys Chem B. 2015 May 21;119(20):6092-100. doi: 10.1021/acs.jpcb.5b00602. Epub 2015 May 7.
4
Introducing Charge Hydration Asymmetry into the Generalized Born Model.将电荷水化不对称性引入广义玻恩模型。
J Chem Theory Comput. 2014 Apr 8;10(4):1788-1794. doi: 10.1021/ct4010917. Epub 2014 Feb 18.
8
Quantitative evaluation of hydration thermodynamics with a continuum model.用连续介质模型对水合热力学进行定量评估。
Biophys Chem. 1994 Aug;51(2-3):359-73; discussion 373-4. doi: 10.1016/0301-4622(94)00058-1.

引用本文的文献

1
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.隐式溶剂中结合自由能估计的最佳介电边界
J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10.
10
Generalized Born Implicit Solvent Models for Biomolecules.生物分子的广义 Born 隐溶剂模型。
Annu Rev Biophys. 2019 May 6;48:275-296. doi: 10.1146/annurev-biophys-052118-115325. Epub 2019 Mar 11.

本文引用的文献

5
The large quadrupole of water molecules.水分子的大四极矩。
J Chem Phys. 2011 Apr 7;134(13):134501. doi: 10.1063/1.3569563.
6
Modeling aqueous solvation with semi-explicit assembly.采用半显式组装模拟水溶剂化。
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3234-9. doi: 10.1073/pnas.1017130108. Epub 2011 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验