Mukhopadhyay Abhishek, Aguilar Boris H, Tolokh Igor S, Onufriev Alexey V
Department of Physics, Virginia Tech , Blacksburg, Virginia 24061, United States.
Department of Computer Science, Virginia Tech , Blacksburg, Virginia 24061, United States.
J Chem Theory Comput. 2014 Apr 8;10(4):1788-1794. doi: 10.1021/ct4010917. Epub 2014 Feb 18.
The effect of charge hydration asymmetry (CHA)-non-invariance of solvation free energy upon solute charge inversion-is missing from the standard linear response continuum electrostatics. The proposed charge hydration asymmetric-generalized Born (CHA-GB) approximation introduces this effect into the popular generalized Born (GB) model. The CHA is added to the GB equation via an analytical correction that quantifies the specific propensity of CHA of a given water model; the latter is determined by the charge distribution within the water model. Significant variations in CHA seen in explicit water (TIP3P, TIP4P-Ew, and TIP5P-E) free energy calculations on charge-inverted "molecular bracelets" are closely reproduced by CHA-GB, with the accuracy similar to models such as SEA and 3D-RISM that go beyond the linear response. Compared against reference explicit (TIP3P) electrostatic solvation free energies, CHA-GB shows about a 40% improvement in accuracy over the canonical GB, tested on a diverse set of 248 rigid small neutral molecules (root mean square error, rmse = 0.88 kcal/mol for CHA-GB vs 1.24 kcal/mol for GB) and 48 conformations of amino acid analogs (rmse = 0.81 kcal/mol vs 1.26 kcal/mol). CHA-GB employs a novel definition of the dielectric boundary that does not subsume the CHA effects into the intrinsic atomic radii. The strategy leads to finding a new set of intrinsic atomic radii optimized for CHA-GB; these radii show physically meaningful variation with the atom type, in contrast to the radii set optimized for GB. Compared to several popular radii sets used with the original GB model, the new radii set shows better transferability between different classes of molecules.
标准线性响应连续介质静电学中缺少电荷水合不对称性(CHA)——溶剂化自由能的非不变性对溶质电荷反转的影响。所提出的电荷水合不对称广义玻恩(CHA-GB)近似将这种影响引入了流行的广义玻恩(GB)模型。通过一种解析校正将CHA添加到GB方程中,该校正量化了给定水模型的CHA的特定倾向;后者由水模型内的电荷分布决定。在对电荷反转的“分子手镯”进行的显式水(TIP3P、TIP4P-Ew和TIP5P-E)自由能计算中看到的CHA的显著变化被CHA-GB紧密再现,其精度与超越线性响应的SEA和3D-RISM等模型相似。与参考显式(TIP3P)静电溶剂化自由能相比,在一组248个刚性小中性分子上进行测试时,CHA-GB的精度比标准GB提高了约40%(均方根误差,CHA-GB为0.88 kcal/mol,GB为1.24 kcal/mol),在48个氨基酸类似物构象上测试时也是如此(均方根误差,分别为0.81 kcal/mol和1.26 kcal/mol)。CHA-GB采用了一种新的介电边界定义,该定义不会将CHA效应纳入固有原子半径。该策略导致找到一组针对CHA-GB优化的新的固有原子半径;与为GB优化的半径集相比,这些半径显示出随原子类型的物理上有意义的变化。与原始GB模型使用的几个流行半径集相比,新的半径集在不同类别的分子之间表现出更好的转移性。