Babbs Charles F
Department of Basic Medical Sciences, 1246 Lynn Hall, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, USA.
Pacing Clin Electrophysiol. 2012 Sep;35(9):1135-45. doi: 10.1111/j.1540-8159.2012.03454.x. Epub 2012 Jul 4.
Research is needed to explore the relative benefits of alternative electrode placements in biventricular and left ventricular (LV) pacing for heart failure with left bundle branch block (LBBB).
A fast computational model of the left ventricle, running on an ordinary laptop computer, was created to simulate the spread of electrical activation over the myocardial surface, together with the resulting electrocardiogram, segmental wall motion, stroke volume, and ejection fraction in the presence of varying degrees of mitral regurgitation. Arbitrary zones of scar and blocked electrical conduction could be modeled.
Simulations showed there are both sweet spots and poor spots for LV electrode placement, sometimes separated by only a few centimeters. In heart failure with LBBB, pacing at poor spots can produce little benefit or even reduce pumping effectiveness. Pacing at sweet spots can produce up to 35% improvement in ejection fraction. Relatively larger benefit occurs in dilated hearts, in keeping with the greater disparity between early and late activated muscle. Sweet spots are typically located on the basal to midlevel, inferolateral wall. Poor spots are located on or near the interventricular septum. Anteroapical scar with conduction block causes little shift in locations for optimal pacing. Hearts with increased passive ventricular compliance and absence of preejection mitral regurgitation exhibit greater therapeutic gain. The durations and wave shapes of QRS complexes in the electrocardiogram can help predict optimum electrode placement in real time.
Differences between poor responders and hyperresponders to cardiac resynchronization therapy can be understood in terms of basic anatomy, physiology, and pathophysiology. Computational modeling suggests general strategies for optimal electrode placement. In a given patient heart size, regional pathology and regional dynamics allow individual pretreatment planning to target optimal electrode placement.
需要开展研究以探讨在左束支传导阻滞(LBBB)所致心力衰竭患者中,双心室起搏和左心室(LV)起搏时不同电极放置位置的相对益处。
创建了一个在普通笔记本电脑上运行的左心室快速计算模型,以模拟电激动在心肌表面的传播,以及在存在不同程度二尖瓣反流时产生的心电图、节段性室壁运动、每搏输出量和射血分数。可以对任意的瘢痕区域和电传导阻滞进行建模。
模拟结果显示,LV电极放置存在最佳位置和欠佳位置,有时两者仅相隔几厘米。在LBBB所致心力衰竭患者中,在欠佳位置起搏可能几乎没有益处,甚至会降低泵血效率。在最佳位置起搏可使射血分数提高多达35%。在扩张型心脏中,相对获益更大,这与早期和晚期激活的心肌之间的差异更大相一致。最佳位置通常位于心底至心中部的下外侧壁。欠佳位置位于室间隔上或其附近。伴有传导阻滞的前心尖瘢痕对最佳起搏位置的影响不大。心室被动顺应性增加且无二尖瓣反流的心脏表现出更大的治疗获益。心电图中QRS波群的持续时间和波形有助于实时预测最佳电极放置位置。
心脏再同步治疗反应欠佳者和反应过度者之间的差异可以从基本的解剖学、生理学和病理生理学角度来理解。计算模型提示了最佳电极放置的一般策略。对于给定患者的心脏大小、局部病理和局部动力学情况,可进行个体化的预处理规划,以确定最佳电极放置位置。