Suppr超能文献

用偏度估计增量成本:一个警示。

Estimating incremental costs with skew: a cautionary note.

机构信息

College of Pharmacy, University of Iowa, Iowa City, IA 52246, USA.

出版信息

Appl Health Econ Health Policy. 2012 Sep 1;10(5):319-29. doi: 10.2165/11632430-000000000-00000.

Abstract

BACKGROUND

Cost data in healthcare are often skewed across patients. Thus, researchers have used either a log transformation of the dependent variable or generalized linear models with log links. However, frequently these non-linear approaches produce non-linear incremental effects: the incremental effects differ at different levels of the covariates, and this can cause dramatic effects on predicted cost.

OBJECTIVES

The aim of this study was to demonstrate that when modelling skewed data, log link functions or log transformations are not necessary and have unintended effects.

METHODS

We simulated cost data using a linear model with a 'treatment', a covariate and a specified number of observations with excessive cost (skewed data). We also used actual data from a pain-relief intervention among hip-replacement patients. We then estimated cost models using various functional approaches suggested to handle skew and calculated the incremental cost of treatment at various levels of the covariate(s).

RESULTS

All of these methods provide unbiased estimates of the incremental effect of treatment on costs at the mean level of the covariate. However, in some log-based models the implied incremental treatment cost doubled between extreme low and high values of the covariate in a manner inconsistent with the underlying linear model.

CONCLUSIONS

Although specification checks are always needed, the potential for misleading incremental estimates resulting from log-based specifications is often ignored. In this era of cost containment and comparisons of treatment effectiveness it is vital that researchers and policymakers understand the limitation of the inferences that can be made using log-based models for patients whose characteristics differ from the sample mean.

摘要

背景

医疗保健中的成本数据通常在患者之间存在偏倚。因此,研究人员要么使用因变量的对数变换,要么使用具有对数链接的广义线性模型。然而,这些非线性方法通常会产生非线性增量效应:增量效应在协变量的不同水平上有所不同,这可能会对预测成本产生巨大影响。

目的

本研究旨在证明在对偏态数据进行建模时,对数链接函数或对数变换并非必要,并且会产生意外的效果。

方法

我们使用具有“治疗”、协变量和指定数量的过度成本观测值(偏态数据)的线性模型模拟成本数据。我们还使用了髋关节置换患者疼痛缓解干预的实际数据。然后,我们使用各种建议用于处理偏度的功能方法来估计成本模型,并计算协变量各水平下治疗的增量成本。

结果

所有这些方法都提供了在协变量均值水平上治疗对成本的增量效应的无偏估计。然而,在一些基于对数的模型中,隐含的增量治疗成本在协变量的极低和极高值之间翻倍,这与基础线性模型不一致。

结论

尽管始终需要进行规范检查,但基于对数的规范可能会产生误导性的增量估计,这一点往往被忽视。在成本控制和治疗效果比较的时代,研究人员和政策制定者必须理解对数模型对特征与样本均值不同的患者进行推断的局限性。

相似文献

1
Estimating incremental costs with skew: a cautionary note.用偏度估计增量成本:一个警示。
Appl Health Econ Health Policy. 2012 Sep 1;10(5):319-29. doi: 10.2165/11632430-000000000-00000.
4

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验