INIQUI-CONICET, Universidad Nacional de Salta, Av. Bolivia 5150, Salta, 4400, Argentina.
Environ Monit Assess. 2013 Mar;185(3):2565-76. doi: 10.1007/s10661-012-2731-9. Epub 2012 Jul 6.
Enteric viruses monitoring in surface waters requires the concentration of viruses before detection assays. The aim of this study was to evaluate different methods in terms of recovery efficiencies of bacteriophage PP7 of Pseudomonas aeruginosa, measured by real-time PCR, using it as a viral control process in water analysis. Different nucleic acid extraction methods (silica-guanidinium thiocyanate, a commercial kit (Qiagen Viral RNA Kit) and phenol-chloroform with alcohol precipitation) exhibited very low recovery efficiencies (0.08-4.18 %), being the most efficient the commercial kit used for subsequent experiments. To evaluate the efficiency of three concentration methods, PBS (as model for clean water) and water samples from rivers were seeded to reach high (HC, 10(6) pfu ml(-1)) and low concentrations (LC, 10(4) pfu ml(-1)) of PP7. Tangential ultrafiltration proved to be more efficient (50.36 ± 12.91, 17.21 ± 9.22 and 12.58 ± 2.35 % for HC in PBS and two river samples, respectively) than adsorption-elution with negatively charged membranes (1.00 ± 1.34, 2.79 ± 2.62 and 0.05 ± 0.08 % for HC in PBS and two river samples, respectively) and polyethylene glycol precipitation (15.95 ± 7.43, 4.01 ± 1.12 and 3.91 ± 0.54 %, for HC in PBS and two river samples, respectively), being 3.2-50.4 times more efficient than the others for PBS and 2.7-252 times for river samples. Efficiencies also depended on the initial virus concentration and aqueous matrixes composition. In consequence, the incorporation of an internal standard like PP7 along the process is useful as a control of the water concentration procedure, the nucleic acid extraction, the presence of inhibitors and the variability of the recovery among replicas, and for the calculation of the sample limit of detection. Thus, the use of a process control, as presented here, is crucial for the accurate quantification of viral contamination.
在进行地表水肠道病毒监测时,需要在检测前对病毒进行浓缩。本研究旨在评估不同方法对铜绿假单胞菌噬菌体 PP7 的回收率,方法是使用实时 PCR 测量其回收率,并将其作为水样分析过程中的病毒控制过程。不同的核酸提取方法(硅胶-异硫氰酸胍、商业试剂盒(Qiagen Viral RNA Kit)和酚-氯仿-醇沉淀)的回收率非常低(0.08-4.18%),其中商业试剂盒用于后续实验的回收率最高。为了评估三种浓缩方法的效率,使用 PBS(清洁水模型)和来自河流的水样对其进行接种,以达到高浓度(HC,10(6) pfu ml(-1))和低浓度(LC,10(4) pfu ml(-1))的 PP7。切向超滤法(Tangential ultrafiltration)证明比带负电荷的膜吸附洗脱(adsorption-elution with negatively charged membranes)和聚乙二醇沉淀(polyethylene glycol precipitation)更有效(HC 在 PBS 和两个河流样品中的回收率分别为 50.36 ± 12.91%、17.21 ± 9.22%和 12.58 ± 2.35%),分别为 3.2-50.4 倍和 2.7-252 倍。该方法对 PBS 和河流样品的回收率取决于初始病毒浓度和水基质的组成。因此,在整个过程中加入内部标准(如 PP7)可作为水样浓缩程序、核酸提取、抑制剂存在情况和回收率在重复之间的可变性的控制,以及计算样品检测限。因此,如本文所述,使用过程控制对于准确量化病毒污染至关重要。