Suppr超能文献

基于拟合呼吸阻抗数据的集总元件模型的生理学解释:正反向建模的应用。

Physiological interpretations based on lumped element models fit to respiratory impedance data: use of forward-inverse modeling.

作者信息

Lutchen K R, Costa K D

机构信息

Department of Biomedical Engineering, Boston University, MA 02215.

出版信息

IEEE Trans Biomed Eng. 1990 Nov;37(11):1076-86. doi: 10.1109/10.61033.

Abstract

Respiratory impedance (Zrs) data at lower (less than 4 Hz) and higher (greater than 32 Hz) frequencies require more complicated inverse models than the standard series combination of a respiratory resistance, inertance, and compliance. In this paper, a forward-inverse modeling approach was used to provide insight on how the parameters in these more complicated inverse models reflect the true physiological system. Forward models are set up to incorporate explicit physiological and anatomical detail. Simulated forward data are then fit with identifiable inverse models and the parameter estimates related to the known detail in the forward model. It is shown that inverse fitting of low frequency data alone will not allow a distinction between frequency dependence due to airway inhomogeneities and frequency dependence due to tissue viscoelasticity. With higher frequency data, a forward model based on an asymmetric branching airways network was used to simulate Zrs from 0.1-128 Hz with increasing amounts of nonuniform peripheral airway obstruction. Here, inverse modeling is more amenable to sensibly separating estimates of airway and tissue properties. A key result, however, is that changes in the tissue parameters of an inverse model (which provides an excellent fit to Zrs data) will appropriately occur in response to inhomogeneous alterations in airway diameters only. The apparent altered tissue properties reflect the decreased communication of some tissue segments with the airway opening and not an explicit change at the tissue level. These phenomena present a substantial problem for the inverse modeler. Finally, inverse model fitting of low and high frequency Zrs data simultaneously with a single model is not helpful for extracting additional physiological detail. Instead, separate models should be applied to each frequency range.

摘要

较低频率(低于4Hz)和较高频率(高于32Hz)下的呼吸阻抗(Zrs)数据需要比呼吸阻力、惯性和顺应性的标准串联组合更复杂的逆模型。在本文中,采用了正向-逆建模方法来深入了解这些更复杂的逆模型中的参数如何反映真实的生理系统。建立正向模型以纳入明确的生理和解剖细节。然后将模拟的正向数据与可识别的逆模型进行拟合,并将参数估计与正向模型中的已知细节相关联。结果表明,仅对低频数据进行逆拟合无法区分由于气道不均匀性引起的频率依赖性和由于组织粘弹性引起的频率依赖性。对于高频数据,使用基于不对称分支气道网络的正向模型来模拟0.1 - 128Hz范围内的Zrs,并增加外周气道阻塞的不均匀程度。在这里,逆建模更适合合理地分离气道和组织特性的估计。然而,一个关键结果是,逆模型(能很好地拟合Zrs数据)的组织参数变化仅会因气道直径的不均匀变化而适当地发生。明显改变的组织特性反映了一些组织段与气道开口之间的连通性降低,而不是组织水平上的明确变化。这些现象给逆建模者带来了一个重大问题。最后,用单个模型同时对低频和高频Zrs数据进行逆模型拟合无助于提取额外的生理细节。相反,应将单独的模型应用于每个频率范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验