Suppr超能文献

从肺阻抗谱估计随机肺组织异质性的可靠性:一项正逆建模研究。

Reliability of estimating stochastic lung tissue heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study.

作者信息

Kaczka David W, Massa Christopher B, Simon Brett A

机构信息

Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA.

出版信息

Ann Biomed Eng. 2007 Oct;35(10):1722-38. doi: 10.1007/s10439-007-9339-1. Epub 2007 Jun 9.

Abstract

Heterogeneity of regional lung mechanics is an important determinant of the work of breathing and may be a risk factor for ventilator associated lung injury. The ability to accurately assess heterogeneity may have important implications for monitoring disease progression and optimizing ventilator settings. Inverse modeling approaches, when applied to dynamic pulmonary impedance data (Z(L)), are thought to be sensitive to the detection of mechanical heterogeneity with the ability to characterize global lung function using a minimal number of free parameters. However, the reliability and bias associated with such model-based estimates of heterogeneity are unknown. We simulated Z(L) spectra from healthy, emphysematous, and acutely injured lungs using a computer-generated anatomic canine structure with asymmetric Horsfield branching and various predefined distributions of stochastic lung tissue heterogeneity. Various inverse models with distinct topologies incorporating linear resistive and inertial airways with parallel tissue viscoelasticity were then fitted to these Z(L) spectra and evaluated in terms of their quality of fit as well as the accuracy and reliability of their respective model parameters. While all model topologies detected appropriate changes in tissue heterogeneity, only a topology consisting of lumped airway properties with distributed tissue properties yielded accurate estimates of both mean lung tissue stiffness and the spread of regional elastances. These data demonstrate that inverse modeling approaches applied to noninvasive measures of Z(L) may provide reliable and accurate assessments of lung tissue heterogeneity as well as insight into distributed lung mechanical properties.

摘要

肺区域力学的异质性是呼吸功的重要决定因素,可能是呼吸机相关性肺损伤的危险因素。准确评估异质性的能力可能对监测疾病进展和优化呼吸机设置具有重要意义。当应用于动态肺阻抗数据(Z(L))时,逆向建模方法被认为对机械异质性的检测敏感,并且能够使用最少数量的自由参数来表征整体肺功能。然而,与基于此类模型的异质性估计相关的可靠性和偏差尚不清楚。我们使用具有不对称霍斯菲尔德分支和各种预定义随机肺组织异质性分布的计算机生成的解剖犬结构,模拟了健康、肺气肿和急性损伤肺的Z(L)谱。然后将包含线性电阻性和惯性气道以及平行组织粘弹性的具有不同拓扑结构的各种逆向模型拟合到这些Z(L)谱上,并根据它们的拟合质量以及各自模型参数的准确性和可靠性进行评估。虽然所有模型拓扑都检测到了组织异质性的适当变化,但只有一种由集中气道特性和分布式组织特性组成的拓扑能够准确估计平均肺组织硬度和区域弹性的分布。这些数据表明,应用于Z(L)无创测量的逆向建模方法可能提供对肺组织异质性的可靠和准确评估,以及对分布式肺机械特性的深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验