Suppr超能文献

迭代积分参数识别呼吸力学模型。

Iterative integral parameter identification of a respiratory mechanics model.

机构信息

Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.

出版信息

Biomed Eng Online. 2012 Jul 18;11:38. doi: 10.1186/1475-925X-11-38.

Abstract

BACKGROUND

Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions.

METHODS

An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients.

RESULTS

The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested.

CONCLUSION

These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

摘要

背景

特定患者的呼吸力学模型可以支持在通气治疗过程中评估最佳的肺保护性通气机设置。临床应用要求必须使用床边可获得的信息来识别个体的模型参数值。多元线性回归或基于梯度的参数识别方法对噪声和初始参数估计值非常敏感。因此,它们很难在床边应用以支持治疗决策。

方法

将迭代积分参数识别方法应用于二阶呼吸力学模型。使用模拟数据和临床数据将该方法与常用的回归方法和误差映射方法进行了比较。使用来自 13 例急性呼吸窘迫综合征(ARDS)患者的数据评估了该方法的临床应用潜力。

结果

与使用模拟数据集的单纯形搜索法相比,迭代积分法收敛到误差最小值的速度快 350 倍,而与使用临床数据集相比,收敛速度快 50 倍。已建立的回归方法由于对噪声敏感,报告了错误的结果。相比之下,迭代积分方法独立于初始参数估计值而有效,并在每种情况下都成功收敛。

结论

这些研究表明,迭代积分方法在计算时间、操作员独立性和鲁棒性方面具有优势,因此适用于该临床应用的床边使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/306c/3460758/d35c87ddb6f8/1475-925X-11-38-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验