Morgan J E, Hoffman E P, Partridge T A
Department of Histopathology, Charing Cross and Westminster Medical School, London, UK.
J Cell Biol. 1990 Dec;111(6 Pt 1):2437-49. doi: 10.1083/jcb.111.6.2437.
Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc) (Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176-179). However, it is difficult to determine whether this biochemical "rescue" results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration (Coulton, G. R., N. A. Curtin, J. E. Morgan, and T. A. Partridge. 1988. Neuropathol. Appl. Neurobiol. 14:299-314). By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily (Wakeford, S., D. J. Watt, and T. A. Patridge. 1990. Muscle & Nerve.) Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.
通过植入正常的肌肉前体细胞(MPC),可部分纠正X连锁肌营养不良(mdx)小鼠骨骼肌中的肌营养不良蛋白缺陷(Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176 - 179)。然而,很难确定这种生化“挽救”是否会使治疗后的肌肉结构或功能得到任何改善,因为mdx肌肉的旺盛再生足以弥补其退化(Coulton, G. R., N. A. Curtin, J. E. Morgan, and T. A. Partridge. 1988. Neuropathol. Appl. Neurobiol. 14:299 - 314)。通过使用X射线照射来阻止MPC增殖,可以研究mdx肌纤维的损失,而不会受到同时发生的纤维再生的复杂影响。因此,可以很容易地检测到任何潜在治疗方法导致的纤维存活改善情况(Wakeford, S., D. J. Watt, and T. A. Patridge. 1990. Muscle & Nerve.)。在此,我们将从新生小鼠获得的正常MPC植入到预先照射过的mdx肌肉中,发现与未照射的mdx肌肉相比,植入的MPC对其渗透和替代更为广泛;这从葡萄糖 - 6 - 磷酸异构酶同工酶标记物的分析以及治疗后肌肉中肌营养不良蛋白的免疫印迹和免疫染色中都很明显。正常MPC的掺入显著减少了照射后mdx肌肉中肌纤维的损失和肌肉结构的恶化。令人惊讶的是再生纤维大多是外周核的,而再生的小鼠骨骼肌纤维通常是中央核的。我们将这种明显正常肌肉的再生归因于新生小鼠MPC即使移植到3周龄的退化肌肉中仍倾向于重现其新生儿发育过程。