Department of Biology, Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
Nat Chem Biol. 2012 Aug;8(8):707-13. doi: 10.1038/nchembio.1019. Epub 2012 Jul 1.
Type 1 pili from uropathogenic Escherichia coli are filamentous, noncovalent protein complexes mediating bacterial adhesion to the host tissue. All structural pilus subunits are homologous proteins sharing an invariant disulfide bridge. Here we show that disulfide bond formation in the unfolded subunits, catalyzed by the periplasmic oxidoreductase DsbA, is required for subunit recognition by the assembly chaperone FimC and for FimC-catalyzed subunit folding. FimC thus guarantees quantitative disulfide bond formation in each of the up to 3,000 subunits of the pilus. The X-ray structure of the complex between FimC and the main pilus subunit FimA and the kinetics of FimC-catalyzed FimA folding indicate that FimC accelerates folding of pilus subunits by lowering their topological complexity. The kinetic data, together with the measured in vivo concentrations of DsbA and FimC, predict an in vivo half-life of 2 s for oxidative folding of FimA in the periplasm.
尿路致病性大肠埃希氏菌的 1 型菌毛是丝状的、非共价的蛋白质复合物,介导细菌对宿主组织的黏附。所有结构菌毛亚基都是具有不变二硫键的同源蛋白。在这里,我们表明,折叠亚基中的二硫键形成,由周质氧化还原酶 DsbA 催化,是亚基被组装伴侣 FimC 识别所必需的,也是 FimC 催化的亚基折叠所必需的。因此,FimC 保证了菌毛中多达 3000 个亚基中二硫键的定量形成。FimC 与主要菌毛亚基 FimA 之间的复合物的 X 射线结构和 FimC 催化的 FimA 折叠的动力学表明,FimC 通过降低拓扑复杂性来加速菌毛亚基的折叠。动力学数据,以及体内 DsbA 和 FimC 的测量浓度,预测 FimA 在周质中的氧化折叠的体内半衰期为 2 秒。