Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland.
J Immunol. 2012 Aug 15;189(4):1886-97. doi: 10.4049/jimmunol.1201022. Epub 2012 Jul 6.
The Drosophila antimicrobial response is one of the best characterized systems of pattern recognition receptor-mediated defense in metazoans. Drosophila senses Gram-negative bacteria via two peptidoglycan recognition proteins (PGRPs), membrane-bound PGRP-LC and secreted/cytosolic PGRP-LE, which relay diaminopimelic acid (DAP)-type peptidoglycan sensing to the Imd signaling pathway. In the case of PGRP-LC, differential splicing of PGRP domain-encoding exons to a common intracellular domain-encoding exon generates three receptor isoforms, which differ in their peptidoglycan binding specificities. In this study, we used Phi31-mediated recombineering to generate fly lines expressing specific isoforms of PGRP-LC and assessed the tissue-specific roles of PGRP-LC isoforms and PGRP-LE in the antibacterial response. Our in vivo studies demonstrate the key role of PGRP-LCx in sensing DAP-type peptidoglycan-containing Gram-negative bacteria or Gram-positive bacilli during systemic infection. We also highlight the contribution of PGRP-LCa/x heterodimers to the systemic immune response to Gram-negative bacteria through sensing of tracheal cytotoxin (TCT), whereas PGRP-LCy may have a minor role in antagonizing the immune response. Our results reveal that both PGRP-LC and PGRP-LE contribute to the intestinal immune response, with a predominant role of cytosolic PGRP-LE in the midgut, the central section of endodermal origin where PGRP-LE is enriched. Our in vivo model also definitively establishes TCT as the long-distance elicitor of systemic immune responses to intestinal bacteria observed in a loss-of-tolerance model. In conclusion, our study delineates how a combination of extracellular sensing by PGRP-LC isoforms and intracellular sensing through PGRP-LE provides sophisticated mechanisms to detect and differentiate between infections by different DAP-type bacteria in Drosophila.
果蝇的抗菌反应是后生动物模式识别受体介导防御中研究最为透彻的系统之一。果蝇通过两种肽聚糖识别蛋白(PGRPs)——膜结合的 PGRP-LC 和分泌/胞质 PGRP-LE——感知革兰氏阴性菌,它们将二氨基庚二酸(DAP)型肽聚糖的感应传递到 Imd 信号通路。在 PGRP-LC 的情况下,PGRP 结构域编码外显子的差异剪接为一个共同的胞质内结构域编码外显子,产生三种受体同工型,它们在肽聚糖结合特异性上有所不同。在这项研究中,我们使用 Phi31 介导的重组酶生成表达特定 PGRP-LC 同工型的果蝇品系,并评估了 PGRP-LC 同工型和 PGRP-LE 在抗菌反应中的组织特异性作用。我们的体内研究表明,PGRP-LCx 在全身感染过程中感知 DAP 型肽聚糖含量的革兰氏阴性菌或革兰氏阳性杆菌中起着关键作用。我们还强调了 PGRP-LCa/x 异二聚体通过感应气管细胞毒素(TCT)在革兰氏阴性菌系统免疫反应中的贡献,而 PGRP-LCy 在拮抗免疫反应中可能发挥次要作用。我们的结果表明,PGRP-LC 和 PGRP-LE 都有助于肠道免疫反应,胞质 PGRP-LE 在中肠(PGRP-LE 丰富的内胚层起源的中央部分)中发挥主要作用。我们的体内模型还明确确定了 TCT 是在耐失模型中观察到的肠道细菌引起的全身性免疫反应的远距离引发剂。总之,我们的研究描绘了 PGRP-LC 同工型的细胞外感应和 PGRP-LE 的细胞内感应相结合如何提供复杂的机制来检测和区分不同 DAP 型细菌在果蝇中的感染。