Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 10012, India.
Environ Monit Assess. 2013 Apr;185(4):2951-60. doi: 10.1007/s10661-012-2763-1. Epub 2012 Jul 10.
An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.
在开顶式气室(OTC)中进行了一项实验,以研究升高的 CO2(580±20 μmol mol(-1))对嘧菌酯降解和土壤微生物活性的影响。结果表明,升高的 CO2 对嘧菌酯在水稻种植土壤中的持久性没有任何显著影响。嘧菌酯在对照土壤(在室外大气中生长的水稻)中的半衰期值为 20.3 天,在 OTC 中生长的在大气 CO2 下的水稻中的半衰期值为 19.3 天,而在 OTC 中生长的在升高的 CO2 大气下的水稻中的半衰期值为 17.5 天。嘧菌酯酸是嘧菌酯的唯一代谢物,但它没有在土壤/水中积累,而是进一步代谢。升高的 CO2 增强了土壤微生物生物量(MBC)和土壤碱性磷酸酶活性。与在大气 CO2 下生长的水稻(无论是在室外还是在 OTC 中)相比,在升高的 CO2 下土壤 MBC 增加了一倍。升高的 CO2 不影响脱氢酶、荧光素二乙酸酯和酸性磷酸酶活性。嘧菌酯施用于大气 CO2 和升高的 CO2 土壤均抑制碱性磷酸酶活性,但对其他酶没有影响。OTC 内温度略有升高(1.8-2°C)不会影响微生物参数,因为在大气 CO2 下生长的室外水稻和 OTC 中的微生物参数相似。在升高的 CO2 下土壤中的 MBC 较高可能是由于植物代谢和根系分泌增加了根际中碳的可用性;然而,它并没有显著增加嘧菌酯的降解,这表明农药降解不仅仅是土壤 MBC 的结果。研究表明,全球变暖后 CO2 水平的升高可能不会对嘧菌酯的降解产生不利影响。然而,全球变暖是一个连续和累积的过程,因此,需要进行长期研究,以更真实地评估全球变暖对农药命运的影响。