INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Tour Lavoisier 2ème étage, Hôpital Necker-Enfants Malades, 149 rue de Sèvres-75015 Paris, France.
J Orthop Res. 2012 Dec;30(12):1869-78. doi: 10.1002/jor.22181. Epub 2012 Jul 9.
While century old clinical reports document the periosteum's remarkable regenerative capacity, only in the past decade have scientists undertaken mechanistic investigations of its regenerative potential. At a Workshop at the 2012 Annual Meeting of Orthopaedic Research Society, we reviewed the molecular, cellular, and tissue scale approaches to elucidate the mechanisms underlying the periosteum's regenerative potential as well as translational therapies engineering solutions inspired by its remarkable regenerative capacity. The entire population of osteoblasts within periosteum, and at endosteal and trabecular bone surfaces within the bone marrow, derives from the embryonic perichondrium. Periosteal cells contribute more to cartilage and bone formation within the callus during fracture healing than do cells of the bone marrow or endosteum, which do not migrate out of the marrow compartment. Furthermore, a current healing paradigm regards the activation, expansion, and differentiation of periosteal stem/progenitor cells as an essential step in building a template for subsequent neovascularization, bone formation, and remodeling. The periosteum comprises a complex, composite structure, providing a niche for pluripotent cells and a repository for molecular factors that modulate cell behavior. The periosteum's advanced, "smart" material properties change depending on the mechanical, chemical, and biological state of the tissue. Understanding periosteum development, progenitor cell-driven initiation of periosteum's endogenous tissue building capacity, and the complex structure-function relationships of periosteum as an advanced material are important for harnessing and engineering ersatz materials to mimic the periosteum's remarkable regenerative capacity.
虽然一个世纪以来的临床报告都记录了骨膜令人瞩目的再生能力,但直到近十年,科学家们才开始对其再生潜能的机制进行研究。在 2012 年骨科研究学会年会上的一次研讨会上,我们回顾了从分子、细胞和组织层面阐明骨膜再生潜能机制的方法,以及受其显著再生能力启发而设计的转化治疗工程解决方案。骨膜内的成骨细胞,以及骨髓内的骨内膜和小梁骨表面的整个成骨细胞群体,都来源于胚胎的软骨膜。在骨折愈合过程中,骨膜细胞比骨髓或骨内膜细胞更有助于骨痂内的软骨和骨形成,而骨髓或骨内膜细胞不会从骨髓腔迁移出来。此外,目前的愈合模式认为,骨膜干/祖细胞的激活、扩增和分化是构建随后的新血管生成、骨形成和重塑模板的关键步骤。骨膜是一种复杂的复合结构,为多能细胞提供了一个小生境,并为调节细胞行为的分子因子提供了一个储存库。骨膜的高级“智能”材料特性会根据组织的力学、化学和生物学状态而变化。了解骨膜的发育、祖细胞驱动的骨膜内源性组织构建能力的启动,以及骨膜作为一种高级材料的复杂结构-功能关系,对于利用和设计代用材料来模拟骨膜的显著再生能力非常重要。