Suppr超能文献

用于综合基因表达分析和预测医学的自动化贝叶斯框架。

An automated bayesian framework for integrative gene expression analysis and predictive medicine.

作者信息

Parikh Neena, Zollanvari Amin, Alterovitz Gil

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA;

出版信息

AMIA Jt Summits Transl Sci Proc. 2012;2012:95-104. Epub 2012 Mar 19.

Abstract

MOTIVATION

This work constructs a closed loop Bayesian Network framework for predictive medicine via integrative analysis of publicly available gene expression findings pertaining to various diseases.

RESULTS

An automated pipeline was successfully constructed. Integrative models were made based on gene expression data obtained from GEO experiments relating to four different diseases using Bayesian statistical methods. Many of these models demonstrated a high level of accuracy and predictive ability. The approach described in this paper can be applied to any complex disorder and can include any number and type of genome-scale studies.

摘要

动机

本研究通过对与各种疾病相关的公开可用基因表达结果进行综合分析,构建了一个用于预测医学的闭环贝叶斯网络框架。

结果

成功构建了一个自动化流程。使用贝叶斯统计方法,基于从与四种不同疾病相关的基因表达 omnibus 实验(GEO)中获得的数据建立了综合模型。这些模型中的许多都表现出了很高的准确性和预测能力。本文所述方法可应用于任何复杂疾病,并且可以包括任意数量和类型的基因组规模研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/021f/3392067/db8ce8907c1a/95-joint_summit_t2012f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验