Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
J Phys Chem B. 2012 Jul 19;116(28):8154-68. doi: 10.1021/jp3025717. Epub 2012 Jul 10.
Carbon nanotubes are a promising platform across a broad spectrum of applications ranging from separations technology, drug delivery, to bio(electronic) sensors. Proper dispersion of carbon nanotube materials is important to retaining the electronic properties of nanotubes. Experimentally it has been shown that salts can regulate the dispersing properties of CNTs in aqueous system with surfactants (Niyogi, S.; Densmore, C. G.; Doorn, S. K. J. Am. Chem. Soc.2009, 131, 1144-1153); details of the physicochemical mechanisms underlying such effects continue to be explored. We address the effects of inorganic monovalent salts (NaCl and NaI) on dispersion stability of carbon nanotubes.We perform all-atom molecular dynamics simulations using nonpolarizable interaction models to compute the potential of mean force between two (10,10) single-walled carbon nanotubes (SWNTs) in the presence of NaCl/NaI and compare to the potential of mean force between SWNTs in pure water. Addition of salts enhances stability of the contact state between two SWNT's on the order of 4 kcal/mol. The ion-specific spatial distribution of different halide anions gives rise to starkly different contributions to the free energy stability of nanotubes in the contact state. Iodide anion directly stabilizes the contact state to a much greater extent than chloride anion. The enhanced stability arises from the locally repulsive forces imposed on nanotubes by the surface-segregated iodide anion. Within the time scale of our simulations, both NaI and NaCl solutions stabilize the contact state by equivalent amounts. The marginally higher stability for contact state in salt solutions recapitulates results for small hydrophobic solutes in NaCl solutions (Athawale, M. V.; Sarupria, S.; Garde, S. J. Phys. Chem. B2008, 112, 5661-5670) as well as single-walled carbon nanotubes in NaCl and CaCl2 aqueous solutions.
碳纳米管在从分离技术、药物输送到生物(电子)传感器等广泛的应用中具有广阔的应用前景。适当分散碳纳米管材料对于保持纳米管的电子性能非常重要。实验表明,盐可以通过表面活性剂调节 CNT 在水体系中的分散特性(Niyogi,S.;Densmore,C.G.;Doorn,S.K. J.Am.Chem.Soc.2009,131,1144-1153);这种效应的物理化学机制的细节仍在探索中。我们研究了一价无机盐(NaCl 和 NaI)对碳纳米管分散稳定性的影响。我们使用非极化相互作用模型进行全原子分子动力学模拟,以计算存在 NaCl/NaI 时两个(10,10)单壁碳纳米管(SWNTs)之间的平均力势,并将其与纯水中 SWNTs 之间的平均力势进行比较。盐的加入增强了两个 SWNT 之间接触状态的稳定性,约为 4kcal/mol。不同卤化物阴离子的离子特异性空间分布对纳米管在接触状态下的自由能稳定性产生了明显不同的贡献。碘阴离子直接稳定接触状态的程度远大于氯离子。增强的稳定性来自于表面分离的碘阴离子对纳米管施加的局部排斥力。在我们的模拟时间尺度内,NaI 和 NaCl 溶液以相等的量稳定接触状态。盐溶液中接触状态的稳定性略高,这与 NaCl 溶液中小疏水分子(Athawale,M.V.;Sarupria,S.;Garde,S. J.Phys.Chem.B2008,112,5661-5670)和 NaCl 和 CaCl2 水溶液中的单壁碳纳米管的结果一致。