Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
ACS Nano. 2012 Aug 28;6(8):7044-52. doi: 10.1021/nn302090t. Epub 2012 Jul 19.
Charge transport is studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) molecular block using an electrochemical gate. Compared to an unsubstituted-PTCDI block, spectroscopic and electrochemical measurements indicate a reduction in the highest occupied (HOMO)-lowest unoccupied (LUMO) molecular orbital energy gap associated with the electron donor character of the substituents. The small HOMO-LUMO energy gap allows for switching between electron- and hole-dominated charge transports as a function of gate voltage, thus demonstrating a single-molecule ambipolar field-effect transistor. Both the unsubstituted and substituted molecules display similar n-type behaviors, indicating that they share the same n-type conduction mechanism. However, the substituted-PTCDI block shows a peak in the source-drain current vs gate voltage characteristics for the p-type transport, which is attributed to a two-step incoherent transport via the HOMO of the molecule.
在使用电化学门控的情况下,研究了由 1,7-吡咯烷取代的 3,4,9,10-苝四羧酸二酰亚胺 (PTCDI) 分子块形成的单分子结中的电荷输运。与未取代的 PTCDI 块相比,光谱和电化学测量表明与取代基的供电子特性相关的最高占据 (HOMO)-最低未占据 (LUMO) 分子轨道能隙减小。较小的 HOMO-LUMO 能隙允许作为栅极电压的函数在电子和空穴主导的电荷输运之间切换,从而证明了单分子双极场效应晶体管。未取代和取代的分子都表现出相似的 n 型行为,表明它们具有相同的 n 型传导机制。然而,取代的 PTCDI 块在源极-漏极电流对栅极电压特性的 p 型传输中显示出一个峰值,这归因于通过分子的 HOMO 的两步非相干传输。