Suppr超能文献

原肌球蛋白卷曲螺旋中曲率、柔韧性和持久长度之间的关系。

The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil.

机构信息

Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.

出版信息

J Struct Biol. 2010 May;170(2):313-8. doi: 10.1016/j.jsb.2010.01.016. Epub 2010 Feb 1.

Abstract

The inherent flexibility of rod-like tropomyosin coiled-coils is a significant factor that constrains tropomyosin's complex positional dynamics on actin filaments. Flexibility of elongated straight molecules typically is assessed by persistence length, a measure of lengthwise thermal bending fluctuations. However, if a molecule's equilibrium conformation is curved, this formulation yields an "apparent" persistence length ( approximately 100nm for tropomyosin), measuring deviations from idealized straight conformations which then overestimate actual dynamic flexibility. To obtain the "dynamic" persistence length, a true measurement of flexural stiffness, the average curvature of the molecule must be taken into account. Different methods used in our studies for measuring the dynamic persistence length directly from Molecular Dynamics (MD) simulations of tropomyosin are described here in detail. The dynamic persistence length found, 460+/-40nm, is approximately 12-times longer than tropomyosin and 5-times the apparent persistence length, showing that tropomyosin is considerably stiffer than previously thought. The longitudinal twisting behavior of tropomyosin during MD shows that the amplitude of end-to-end twisting fluctuation is approximately 30 degrees when tropomyosin adopts its near-average conformation. The measured bending and twisting flexibilities are used to evaluate different models of tropomyosin motion on F-actin.

摘要

肌球蛋白原丝上的旋绕肌动蛋白的固有灵活性是限制肌球蛋白原丝在肌动蛋白丝上复杂位置动态的一个重要因素。长而直的分子的灵活性通常通过持久长度来评估,这是衡量沿长度方向热弯曲波动的一个指标。然而,如果分子的平衡构象是弯曲的,那么这种公式就会产生一个“表观”持久长度(肌球蛋白原丝约为 100nm),测量与理想直构象的偏差,从而高估实际的动态灵活性。为了获得“动态”持久长度,即真正的弯曲刚度测量值,必须考虑分子的平均曲率。这里详细描述了我们在研究中用于直接从肌球蛋白原丝的分子动力学(MD)模拟中测量动态持久长度的不同方法。发现的动态持久长度为 460+/-40nm,大约是肌球蛋白原丝的 12 倍,是表观持久长度的 5 倍,这表明肌球蛋白原丝比之前认为的要硬得多。肌球蛋白原丝在 MD 过程中的纵向扭曲行为表明,当肌球蛋白原丝采用其接近平均的构象时,其末端到末端的扭曲波动幅度约为 30 度。测量的弯曲和扭曲灵活性用于评估肌球蛋白原丝在 F-肌动蛋白上运动的不同模型。

相似文献

1
The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil.
J Struct Biol. 2010 May;170(2):313-8. doi: 10.1016/j.jsb.2010.01.016. Epub 2010 Feb 1.
2
The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules.
Arch Biochem Biophys. 2014 Jun 15;552-553:68-73. doi: 10.1016/j.abb.2013.09.011. Epub 2013 Sep 23.
3
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.
4
Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting.
Biophys J. 2018 Sep 18;115(6):1082-1092. doi: 10.1016/j.bpj.2018.08.017. Epub 2018 Aug 18.
5
Curvature variation along the tropomyosin molecule.
J Struct Biol. 2010 May;170(2):307-12. doi: 10.1016/j.jsb.2009.12.017. Epub 2009 Dec 22.
6
The propensity for tropomyosin twisting in the presence and absence of F-actin.
Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.
8
Structural implications of conserved aspartate residues located in tropomyosin's coiled-coil core.
Bioarchitecture. 2011 Sep 1;1(5):250-255. doi: 10.4161/bioa.18117.
9
Mechanical properties of tropomyosin and implications for muscle regulation.
Biopolymers. 1996 Jan;38(1):89-95. doi: 10.1002/(SICI)1097-0282(199601)38:1%3C89::AID-BIP7%3E3.0.CO;2-S.
10
An atomic model of the tropomyosin cable on F-actin.
Biophys J. 2014 Aug 5;107(3):694-699. doi: 10.1016/j.bpj.2014.06.034.

引用本文的文献

3
Mechanisms of pathogenicity in the hypertrophic cardiomyopathy-associated TPM1 variant S215L.
PNAS Nexus. 2023 Jan 21;2(3):pgad011. doi: 10.1093/pnasnexus/pgad011. eCollection 2023 Mar.
4
Investigation of shear-induced rearrangement of carbon nanotube bundles using Taylor-Couette flow.
RSC Adv. 2021 Nov 26;11(60):38152-38160. doi: 10.1039/d1ra07354k. eCollection 2021 Nov 23.
5
Kenneth Charles Holmes 1934-2021.
Front Mol Biosci. 2022 Mar 18;9:855014. doi: 10.3389/fmolb.2022.855014. eCollection 2022.
6
Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202012640. Epub 2021 Jul 28.
8
AutoSmarTrace: Automated chain tracing and flexibility analysis of biological filaments.
Biophys J. 2021 Jul 6;120(13):2599-2608. doi: 10.1016/j.bpj.2021.05.011. Epub 2021 May 20.
9
Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function.
Int J Mol Sci. 2020 Nov 18;21(22):8720. doi: 10.3390/ijms21228720.

本文引用的文献

1
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.
2
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
3
Gestalt-binding of tropomyosin to actin filaments.
J Muscle Res Cell Motil. 2008;29(6-8):213-9. doi: 10.1007/s10974-008-9157-6. Epub 2008 Dec 31.
4
Conserved Asp-137 imparts flexibility to tropomyosin and affects function.
J Biol Chem. 2008 Mar 14;283(11):6728-34. doi: 10.1074/jbc.M707485200. Epub 2007 Dec 29.
5
Elasticity of alpha-helical coiled coils.
Phys Rev Lett. 2006 Dec 15;97(24):248101. doi: 10.1103/PhysRevLett.97.248101.
6
Crystal structures of tropomyosin: flexible coiled-coil.
Adv Exp Med Biol. 2007;592:137-51. doi: 10.1007/978-4-431-38453-3_13.
7
A computational study of nucleosomal DNA flexibility.
Biophys J. 2006 Dec 1;91(11):4121-32. doi: 10.1529/biophysj.106.082099. Epub 2006 Aug 4.
10
Structure of the mid-region of tropomyosin: bending and binding sites for actin.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18878-83. doi: 10.1073/pnas.0509269102. Epub 2005 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验