Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
Mol Biol Evol. 2012 Dec;29(12):3703-9. doi: 10.1093/molbev/mss172. Epub 2012 Jul 11.
At macroevolutionary time scales, and for a constant mutation rate, there is an expected linear relationship between time and the number of inferred neutral mutations (the "molecular clock"). However, at shorter time scales, a number of recent studies have observed an apparent acceleration in the rate of molecular evolution. We study this apparent acceleration under a Jukes-Cantor model applied to a randomly mating population, and show that, under the model, it arises as a consequence of ignoring short-term effects due to existing diversity within the population. The acceleration can be accounted for by adding the correction term h(0)e(-4μt/3) to the usual Jukes-Cantor formula p(t) = 3/4(1 - e (-(-4μt/3), where h(0) is the expected heterozygosity in the population at time t = 0. The true mutation rate μ may then be recovered, even if h(0) is not known, by estimating μ and h(0) simultaneously using least squares. Rate estimates made without the correction term (i.e., incorrectly assuming the population to be homogeneous) will result in a divergent rate curve of the form μ(div) = μ + C/t, so that the mutation rate appears to approach infinity as the time scale approaches zero. Although our quantitative results apply only to the Jukes-Cantor model, it is reasonable to suppose that the qualitative picture that emerges also applies to more complex models. Our study, therefore, demonstrates the importance of properly accounting for any ancestral diversity, because it may otherwise play a dominant role in rate overestimation.
在宏观进化时间尺度上,对于恒定的突变率,推断的中性突变数量(“分子钟”)与时间之间存在预期的线性关系。然而,在较短的时间尺度上,许多最近的研究观察到分子进化的速率明显加快。我们在适用于随机交配种群的 Jukes-Cantor 模型下研究这种明显的加速,并表明,在该模型下,它是由于忽略了种群内现有多样性所导致的短期效应而产生的。通过在通常的 Jukes-Cantor 公式 p(t) = 3/4(1 - e (-(-4μt/3)))中添加校正项 h(0)e(-4μt/3),可以解释这种加速,其中 h(0)是种群在 t = 0 时的预期杂合度。然后,即使不知道 h(0),也可以通过使用最小二乘法同时估计 μ 和 h(0)来恢复真实的突变率。如果不使用校正项(即错误地假设种群是同质的)进行速率估计,将会得到一个发散的速率曲线形式为 μ(div) = μ + C/t,因此随着时间尺度接近零,突变率似乎趋近于无穷大。尽管我们的定量结果仅适用于 Jukes-Cantor 模型,但可以合理地假设所出现的定性情况也适用于更复杂的模型。因此,我们的研究表明,正确考虑任何祖先多样性非常重要,因为否则它可能会在高估速率方面发挥主导作用。