Suppr超能文献

生物分子动力学:有序-无序转变和能量景观。

Biomolecular dynamics: order-disorder transitions and energy landscapes.

机构信息

Center for Theoretical Biological Physics, Department of Physics, Rice University, 6100 Main, Houston, TX 77005-1827, USA.

出版信息

Rep Prog Phys. 2012 Jul;75(7):076601. doi: 10.1088/0034-4885/75/7/076601. Epub 2012 Jun 28.

Abstract

While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.

摘要

虽然蛋白质折叠的能量景观理论现在是一个被广泛接受的观点,用于理解相对较弱的分子相互作用如何导致快速和协同的蛋白质折叠,但这样的框架必须扩展到描述在分子机器中观察到的大规模功能运动。在这篇综述中,我们讨论了(1)生物分子折叠的能量景观理论的发展,(2)最近在建立折叠和功能的一致理解方面的进展,以及(3)酶、生物分子马达和其他生物分子机器的功能运动中的新兴主题。最近的理论、计算和实验研究为生物分子运动提供了一个非常动态的画面。与早期的观点不同,早期的观点认为分子机器的功能类似于宏观机器,具有沿着少数自由度以确定方式移动的刚性组件,而生物分子复合物的稳定性很差。由于每个原子相互作用的稳定贡献与溶液中的热波动相当,因此必须重新审视刚体描述的分子功能。一个新兴的主题是,功能运动包括有序-无序转变,结构灵活性对自由能有重要贡献。在这篇综述中,我们描述了有序-无序转变的生物学重要性,并讨论了可以描述这种转变的理论方法的统计力学基础。

相似文献

1
Biomolecular dynamics: order-disorder transitions and energy landscapes.生物分子动力学:有序-无序转变和能量景观。
Rep Prog Phys. 2012 Jul;75(7):076601. doi: 10.1088/0034-4885/75/7/076601. Epub 2012 Jun 28.
4
Entropic control of the free-energy landscape of an archetypal biomolecular machine.熵控制典型生物分子机器的自由能景观。
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2220591120. doi: 10.1073/pnas.2220591120. Epub 2023 May 15.
5
Brownian ratchet models of molecular motors.分子马达的布朗棘轮模型。
Cell Biochem Biophys. 2003;38(2):191-214. doi: 10.1385/CBB:38:2:191.
6
Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations.分子机器的中尺度建模:循环动力学与流体动力学涨落
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):050901. doi: 10.1103/PhysRevE.77.050901. Epub 2008 May 7.
7
Mechanisms for achieving high speed and efficiency in biomolecular machines.生物分子机器实现高速和高效的机制。
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5902-5907. doi: 10.1073/pnas.1812149116. Epub 2019 Mar 8.
8
Protein structural transitions and their functional role.蛋白质结构转变及其功能作用。
Philos Trans A Math Phys Eng Sci. 2005 Feb 15;363(1827):331-55; discussion 355-6. doi: 10.1098/rsta.2004.1496.
9
Synthetic Systems Powered by Biological Molecular Motors.基于生物分子马达的人工合成系统。
Chem Rev. 2020 Jan 8;120(1):288-309. doi: 10.1021/acs.chemrev.9b00249. Epub 2019 Sep 11.

引用本文的文献

5
Dramatic Shape Changes Occur as Cytochrome Folds.细胞色素折叠时会发生剧烈的构象变化。
J Phys Chem B. 2020 Sep 24;124(38):8240-8248. doi: 10.1021/acs.jpcb.0c05802. Epub 2020 Sep 9.
8
POLARIS: Path of Least Action Analysis on Energy Landscapes.北极星:能量景观上的最小作用量路径分析
J Chem Inf Model. 2020 May 26;60(5):2581-2590. doi: 10.1021/acs.jcim.9b01108. Epub 2020 Feb 20.
10
Successes and challenges in simulating the folding of large proteins.模拟大型蛋白质折叠的成功与挑战。
J Biol Chem. 2020 Jan 3;295(1):15-33. doi: 10.1074/jbc.REV119.006794. Epub 2019 Nov 11.

本文引用的文献

5
How fast-folding proteins fold.快速折叠蛋白如何折叠。
Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.
7
Evolutionary optimization of speed and accuracy of decoding on the ribosome.核糖体上解码速度和准确性的进化优化。
Philos Trans R Soc Lond B Biol Sci. 2011 Oct 27;366(1580):2979-86. doi: 10.1098/rstb.2011.0138.
8
Prospects for riboswitch discovery and analysis.核糖开关的发现和分析前景。
Mol Cell. 2011 Sep 16;43(6):867-79. doi: 10.1016/j.molcel.2011.08.024.
10
Dynamic protein-DNA recognition: beyond what can be seen.动态蛋白质-DNA 识别:超越可见范围。
Trends Biochem Sci. 2011 Aug;36(8):415-23. doi: 10.1016/j.tibs.2011.04.006. Epub 2011 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验