Suppr超能文献

弹性组织在运动过程中对肌肉功能的力学和能量学的贡献。

Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.

作者信息

Roberts Thomas J

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

出版信息

J Exp Biol. 2016 Jan;219(Pt 2):266-75. doi: 10.1242/jeb.124446.

Abstract

Muscle force production occurs within an environment of tissues that exhibit spring-like behavior, and this elasticity is a critical determinant of muscle performance during locomotion. Muscle force and power output both depend on the speed of contraction, as described by the isotonic force-velocity curve. By influencing the speed of contractile elements, elastic structures can have a profound effect on muscle force, power and work. In very rapid movements, elastic mechanisms can amplify muscle power by storing the work of muscle contraction slowly and releasing it rapidly. When energy must be dissipated rapidly, such as in landing from a jump, energy stored rapidly in elastic elements can be released more slowly to stretch muscle contractile elements, reducing the power input to muscle and possibly protecting it from damage. Elastic mechanisms identified so far rely primarily on in-series tendons, but many structures within muscles exhibit spring-like properties. Actomyosin cross-bridges, actin and myosin filaments, titin, and the connective tissue scaffolding of the extracellular matrix all have the potential to store and recover elastic energy during muscle contraction. The potential contribution of these elements can be assessed from their stiffness and estimates of the strain they undergo during muscle function. Such calculations provide boundaries for the possible roles these springs might play in locomotion, and may help to direct future studies of the uses of elastic elements in muscle.

摘要

肌肉力量的产生发生在具有类似弹簧特性的组织环境中,这种弹性是运动过程中肌肉性能的关键决定因素。如等张肌力-速度曲线所示,肌肉力量和功率输出均取决于收缩速度。通过影响收缩元件的速度,弹性结构可对肌肉力量、功率和功产生深远影响。在非常快速的运动中,弹性机制可通过缓慢储存肌肉收缩的功并快速释放来放大肌肉功率。当必须快速耗散能量时,例如从跳跃中着陆时,快速储存在弹性元件中的能量可更缓慢地释放,以拉伸肌肉收缩元件,减少输入肌肉的功率,并可能保护其免受损伤。迄今为止确定的弹性机制主要依赖于串联肌腱,但肌肉内的许多结构都具有类似弹簧的特性。肌动球蛋白横桥、肌动蛋白和肌球蛋白丝、肌联蛋白以及细胞外基质的结缔组织支架在肌肉收缩过程中均具有储存和恢复弹性能量的潜力。这些元件的潜在贡献可根据其刚度以及它们在肌肉功能过程中所经历应变的估计值来评估。此类计算为这些弹簧在运动中可能发挥的作用提供了边界,并可能有助于指导未来对肌肉中弹性元件用途的研究。

相似文献

2
The integrated function of muscles and tendons during locomotion.
Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1087-99. doi: 10.1016/s1095-6433(02)00244-1.
3
Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.
J Exp Biol. 2011 Feb 1;214(Pt 3):353-61. doi: 10.1242/jeb.038588.
5
Storage and recovery of elastic potential energy powers ballistic prey capture in toads.
J Exp Biol. 2006 Jul;209(Pt 13):2535-53. doi: 10.1242/jeb.02276.
6
Muscle-spring dynamics in time-limited, elastic movements.
Proc Biol Sci. 2016 Sep 14;283(1838). doi: 10.1098/rspb.2016.1561.
7
Storage and utilization of elastic strain energy during jumping.
J Biomech. 1993 Dec;26(12):1413-27. doi: 10.1016/0021-9290(93)90092-s.
9
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.
10
Contribution of muscle series elasticity to maximum performance in drop jumping.
J Appl Biomech. 2006 Feb;22(1):3-13. doi: 10.1123/jab.22.1.3.

引用本文的文献

1
Effects of External Load on the Contribution of Tendon Dynamics During Stretch-Shortening Cycle Exercises.
J Musculoskelet Neuronal Interact. 2025 Sep 1;25(3):266-275. doi: 10.22540/JMNI-25-266.
3
Gene expression profiling of extraocular muscles in primary inferior oblique overaction.
PeerJ. 2025 May 28;13:e19474. doi: 10.7717/peerj.19474. eCollection 2025.
4
5
Distinct morphological drivers of jumping and maneuvering performance in gerbils.
J Exp Biol. 2025 Feb 1;228(3). doi: 10.1242/jeb.250091. Epub 2025 Feb 13.
8
The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury.
Sports Med Open. 2024 Dec 24;10(1):133. doi: 10.1186/s40798-024-00789-3.
9
A Systematic Review of Lower Limb Strength Tests Used in Elite Basketball.
Sports (Basel). 2024 Sep 20;12(9):262. doi: 10.3390/sports12090262.
10
Beyond power limits: the kinetic energy capacity of skeletal muscle.
J Exp Biol. 2024 Nov 1;227(21). doi: 10.1242/jeb.247150. Epub 2024 Oct 18.

本文引用的文献

2
The energetic benefits of tendon springs in running: is the reduction of muscle work important?
J Exp Biol. 2014 Dec 15;217(Pt 24):4365-71. doi: 10.1242/jeb.112813. Epub 2014 Nov 13.
3
Titin force is enhanced in actively stretched skeletal muscle.
J Exp Biol. 2014 Oct 15;217(Pt 20):3629-36. doi: 10.1242/jeb.105361. Epub 2014 Aug 21.
5
The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle.
J Physiol. 2014 Sep 1;592(17):3881-99. doi: 10.1113/jphysiol.2014.276196. Epub 2014 Jul 11.
6
Locomotor function shapes the passive mechanical properties and operating lengths of muscle.
Proc Biol Sci. 2014 Apr 9;281(1783):20132914. doi: 10.1098/rspb.2013.2914. Print 2014 May 22.
7
The myofilament elasticity and its effect on kinetics of force generation by the myosin motor.
Arch Biochem Biophys. 2014 Jun 15;552-553:108-16. doi: 10.1016/j.abb.2014.02.017. Epub 2014 Mar 12.
8
The passive properties of muscle fibers are velocity dependent.
J Biomech. 2014 Feb 7;47(3):687-93. doi: 10.1016/j.jbiomech.2013.11.044. Epub 2013 Dec 3.
9
A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics.
Biophys J. 2013 Aug 20;105(4):928-40. doi: 10.1016/j.bpj.2013.07.009.
10
How tendons buffer energy dissipation by muscle.
Exerc Sport Sci Rev. 2013 Oct;41(4):186-93. doi: 10.1097/JES.0b013e3182a4e6d5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验