Suppr超能文献

基于时间依赖的可塑性对输入尖峰序列的频谱分析。

Spectral analysis of input spike trains by spike-timing-dependent plasticity.

机构信息

Riken Brain Science Institute, Wako-shi, Saitama, Japan.

出版信息

PLoS Comput Biol. 2012;8(7):e1002584. doi: 10.1371/journal.pcbi.1002584. Epub 2012 Jul 5.

Abstract

Spike-timing-dependent plasticity (STDP) has been observed in many brain areas such as sensory cortices, where it is hypothesized to structure synaptic connections between neurons. Previous studies have demonstrated how STDP can capture spiking information at short timescales using specific input configurations, such as coincident spiking, spike patterns and oscillatory spike trains. However, the corresponding computation in the case of arbitrary input signals is still unclear. This paper provides an overarching picture of the algorithm inherent to STDP, tying together many previous results for commonly used models of pairwise STDP. For a single neuron with plastic excitatory synapses, we show how STDP performs a spectral analysis on the temporal cross-correlograms between its afferent spike trains. The postsynaptic responses and STDP learning window determine kernel functions that specify how the neuron "sees" the input correlations. We thus denote this unsupervised learning scheme as 'kernel spectral component analysis' (kSCA). In particular, the whole input correlation structure must be considered since all plastic synapses compete with each other. We find that kSCA is enhanced when weight-dependent STDP induces gradual synaptic competition. For a spiking neuron with a "linear" response and pairwise STDP alone, we find that kSCA resembles principal component analysis (PCA). However, plain STDP does not isolate correlation sources in general, e.g., when they are mixed among the input spike trains. In other words, it does not perform independent component analysis (ICA). Tuning the neuron to a single correlation source can be achieved when STDP is paired with a homeostatic mechanism that reinforces the competition between synaptic inputs. Our results suggest that neuronal networks equipped with STDP can process signals encoded in the transient spiking activity at the timescales of tens of milliseconds for usual STDP.

摘要

尖峰时间依赖可塑性 (STDP) 在许多脑区都有观察到,如感觉皮层,在这些脑区中,它被假设为神经元之间的突触连接结构。以前的研究已经证明了 STDP 如何使用特定的输入配置,如同时尖峰、尖峰模式和振荡尖峰序列,在短时间尺度上捕获尖峰信息。然而,对于任意输入信号,相应的计算仍然不清楚。本文提供了 STDP 内在算法的总体概述,将许多以前关于成对 STDP 常用模型的结果联系在一起。对于具有可塑性兴奋性突触的单个神经元,我们展示了 STDP 如何对其传入尖峰序列之间的时间互相关图进行频谱分析。突触后反应和 STDP 学习窗口决定了核函数,这些核函数指定了神经元“如何看待”输入相关性。因此,我们将这个无监督学习方案称为“核谱分量分析”(kSCA)。特别是,由于所有可塑性突触相互竞争,因此必须考虑整个输入相关结构。我们发现,当依赖权重的 STDP 引起逐渐的突触竞争时,kSCA 会增强。对于具有“线性”响应和仅成对 STDP 的尖峰神经元,我们发现 kSCA 类似于主成分分析 (PCA)。然而,在一般情况下,单纯的 STDP 不会分离相关性源,例如,当它们在输入尖峰序列中混合时。换句话说,它不会执行独立成分分析 (ICA)。当 STDP 与一种稳态机制配对时,可以实现将神经元调谐到单个相关源,该机制增强了突触输入之间的竞争。我们的结果表明,配备 STDP 的神经元网络可以在通常的 STDP 时间尺度上处理以数十毫秒为单位的短暂尖峰活动中编码的信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2b/3390410/8798f2be0297/pcbi.1002584.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验