Suppr超能文献

反馈抑制回路中通过尖峰相关性传播进行混合信号学习。

Mixed signal learning by spike correlation propagation in feedback inhibitory circuits.

作者信息

Hiratani Naoki, Fukai Tomoki

机构信息

Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa, Chiba, Japan; Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Saitama, Japan.

Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Saitama, Japan.

出版信息

PLoS Comput Biol. 2015 Apr 24;11(4):e1004227. doi: 10.1371/journal.pcbi.1004227. eCollection 2015 Apr.

Abstract

The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory.

摘要

大脑能够学习并检测被各种类型噪声掩盖的混合输入信号,而 spike-timing-dependent plasticity(STDP,突触时间依赖性可塑性)是候选的突触层面机制。由于感觉输入通常具有脉冲相关性,并且局部回路具有密集的反馈连接,输入脉冲会导致脉冲相关性在侧向回路中传播;然而,侧向回路产生的这种二次相关性如何通过 STDP 影响学习过程,或者它是否有利于从不确定的刺激中实现高效的基于脉冲的学习,在很大程度上尚不清楚。为了探索这些问题的答案,我们构建了具有侧向抑制回路的前馈网络模型,并研究传播的相关性如何影响 STDP 学习,以及这样的回路能实现何种学习算法。我们推导了神经元通过 STDP 检测微小信号的分析条件,并表明根据噪声的来源,不同的相关时间尺度对学习是有用的。特别地,我们表明在存在串扰噪声的情况下,不精确的脉冲相关性有利于学习。我们还表明,通过考虑侧向连接处的兴奋性和抑制性 STDP,该回路可以获得对信号检测最优的侧向结构。此外,我们证明该模型以类似于贝叶斯独立成分分析算法的顺序采样近似的方式执行盲源分离。我们的结果通过整合来自动力系统和信息理论的分析,提供了对反馈回路中 STDP 学习的基本理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ae/4409403/78572b13734f/pcbi.1004227.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验