Institute of Life Sciences, Department of Neurobiology, The Hebrew University, Jerusalem, Israel.
J Neurophysiol. 2011 Mar;105(3):989-98. doi: 10.1152/jn.00612.2010. Epub 2010 Dec 1.
Neocortical layer 5 (L5) pyramidal cells have at least two spike initiation zones: Na(+) spikes are generated near the soma, and Ca(2+) spikes at the apical dendritic tuft. These spikes interact with each other and serve as signals for synaptic plasticity. The present computational study explores the implications of having two spike-timing-dependent plasticity (STDP) signals in a neuron, each with its respective regional population of synaptic "pupils." In a detailed model of an L5 pyramidal neuron, competition emerges between synapses belonging to different regions, on top of the competition among synapses within each region, which characterizes the STDP mechanism. Interregional competition results in strengthening of one group of synapses, which ultimately dominates cell firing, at the expense of weakening synapses in other regions. This novel type of competition is inherent to dendrites with multiple regional signals for Hebbian plasticity. Surprisingly, such interregional competition exists even in a simplified model of two identical coupled compartments. We find that in a model of an L5 pyramidal cell, the different synaptic subpopulations "live in peace" when the induction of Ca(2+) spikes requires the back-propagating action potential (BPAP). Thus we suggest a new key role for the BPAP, to maintain the balance between synaptic efficacies throughout the dendritic tree, thereby sustaining the functional integrity of the entire neuron.
新皮层第 5 层(L5)的锥体神经元至少有两个触发区:Na+ 波在胞体附近产生,Ca2+ 波在树突末梢产生。这些波相互作用,作为突触可塑性的信号。本计算研究探讨了在一个神经元中存在两种时程依赖型突触可塑性(STDP)信号的含义,每个信号都有其各自的突触“瞳孔”区域群体。在 L5 锥体神经元的详细模型中,属于不同区域的突触之间出现了竞争,在每个区域内的突触竞争之上,这是 STDP 机制的特征。区域间竞争导致一组突触增强,最终以牺牲其他区域的突触为代价,主导细胞的放电。这种新的竞争类型是具有多个区域Hebbian 可塑性信号的树突所固有的。令人惊讶的是,即使在两个相同耦合隔室的简化模型中,也存在这种区域间竞争。我们发现,在 L5 锥体神经元的模型中,当诱发 Ca2+ 波需要逆行动作电位(BPAP)时,不同的突触亚群“和平共处”。因此,我们提出了 BPAP 的一个新的关键作用,以维持整个树突中突触效能之间的平衡,从而维持整个神经元的功能完整性。
J Neurophysiol. 2010-12-1
Biol Cybern. 2004-6
Neuroscience. 2008-7-31
PLoS Comput Biol. 2016-3-3
Nat Neurosci. 2000-9
Neurosci Lett. 2006-7-31
PLoS Comput Biol. 2020-12
Front Mol Neurosci. 2018-11-12
PLoS Comput Biol. 2012-7-5
J Neurosci. 2012-1-4
Curr Opin Neurobiol. 2011-6-30