Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland.
PLoS One. 2012;7(7):e40175. doi: 10.1371/journal.pone.0040175. Epub 2012 Jul 6.
Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes.
We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures.
For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter <10 µm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)<0.05). Replication was attempted for SNPs with MAF>10% in 3320 SAPALDIA participants without GWAS.
On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5×10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7×10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0×10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful.
Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobacco smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challenging.
氧化应激相关基因可改变环境空气污染或吸烟对肺功能下降的影响。这种相互作用的影响可能是巨大的,但以前的研究主要集中在单个基因的主要作用上。
我们研究了广泛的氧化应激相关候选基因和途径的两种暴露与肺功能下降之间的相互作用,并对比了两种暴露之间的相互作用。
对于 12679 个单核苷酸多态性(SNP),我们将一秒用力呼气量(FEV1)、FEV1/FVC 和用力呼气量 25%至 75%之间的平均流量(FEF25-75)的变化回归到间隔时间暴露于直径<10μm 的颗粒物(PM10)或吸烟包年(a)、累加 SNP 效应(b)以及 669 名具有 GWAS 数据的成年人中(a)和(b)之间的相互作用项。通过自适应秩截断乘积(ARTP)方法计算了 152 个基因和 14 条途径的交互作用 p 值,并比较了两种暴露。对于名义显著基因(p(交互)<0.05)的最强 SNP,对比了交互作用的效应大小。在没有 GWAS 的 3320 名 SAPALDIA 参与者中,尝试了 MAF>10%的 SNP 的复制。
在 SNP 水平上,基因 SNCA 中的 rs2035268 使 FEV1/FVC 下降了 3.8%(p(交互)=2.5×10(-6)),而基因 PARK2 中的 rs12190800 使 FEV1 下降了 95.1 ml(p(交互)=9.7×10(-8)),同时与 PM10 相互作用。与 PM10 和吸烟量暴露相互作用的基因和途径有很大差异。基因 CRISP2 在 FEV1/FVC 下降上与 PM10 有显著的相互作用(p(交互)=3.0×10(-4))。途径相互作用较弱。未能成功复制 PARK2 和 CRISP2 中最强 SNP 的复制。
与对不断增加的氧化应激的分层反应一致,不同的基因和途径可能介导 PM10 和烟草烟雾对肺功能下降的影响。忽略环境暴露会错过这些模式,但实现足够的样本量和研究样本之间的可比性具有挑战性。