Shvetsova Antonina N, Mennerich Daniela, Kerätär Juha M, Hiltunen J Kalervo, Kietzmann Thomas
Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland.
Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland.
Redox Biol. 2017 Aug;12:1052-1061. doi: 10.1016/j.redox.2017.05.003. Epub 2017 May 8.
Mitochondria are the main consumers of molecular O in a cell as well as an abundant source of reactive oxygen species (ROS). Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α). While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC) indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR), and cells lacking manganese superoxide dismutase (MnSOD) showed a reduced induction of HIF-1α under long-term (20h) hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle contribute differently to HIF-1α regulation by affecting HIF-1α degradation and HIF-1α transcription where ROS play not a major role.
线粒体是细胞中分子氧的主要消耗者,也是活性氧(ROS)的丰富来源。分子氧和ROS都是缺氧诱导因子-1α亚基(HIF-α)的强大调节因子。虽然氧依赖性HIF-α调节的许多机制已广为人知,但关于线粒体的观点尚不清楚。几种使用针对线粒体电子传递链(ETC)的药理学或遗传学工具的方法表明,主要在ETC复合体III的 Rieske 簇形成的ROS是HIF-1α激活的驱动因素。然而,研究非ETC相关线粒体缺陷及其对HIF-1α调节影响的研究很少,即便有也极为稀缺。因此,在本研究中,我们检测了三种具有非ETC线粒体缺陷的细胞系,并重点研究了HIF-1α的降解和转录、靶基因表达以及ROS水平。我们发现,缺乏关键酶2-烯酰硫酯还原酶/线粒体烯酰辅酶A还原酶(MECR)的细胞以及缺乏锰超氧化物歧化酶(MnSOD)的细胞在长期(20小时)缺氧条件下HIF-1α的诱导作用降低。相比之下,缺乏线粒体DNA耗竭综合征通道蛋白Mpv17的细胞在常氧条件下HIF-1α水平就已升高。此外,我们表明,尽管所用细胞类型中的所有线粒体缺陷都会增加ROS的形成,但ROS在介导其对HIF-1α的影响时并未呈现统一模式。而且,所有缺陷都通过促进HIF-1α降解以及通过改变HIF-1α转录导致不同的HIF-1α调节。其中,缺乏MECR和MnSOD的细胞HIF-1α mRNA水平降低,而缺乏Mpv17的细胞在常氧和缺氧条件下HIF-1α mRNA水平升高。总之,我们的研究首次表明,与ETC和三羧酸循环无关的线粒体缺陷通过影响HIF-1α降解和HIF-1α转录对HIF-1α调节有不同贡献,而ROS在其中并非起主要作用。