Suppr超能文献

优化的自组织工程心脏组织的收缩和电生理特性。

Contractile and electrophysiologic characterization of optimized self-organizing engineered heart tissue.

机构信息

Department of Surgery, University of California Davis Medical Center, Sacramento, California 95817, USA.

出版信息

Ann Thorac Surg. 2012 Oct;94(4):1241-8; discussion 1249. doi: 10.1016/j.athoracsur.2012.04.098. Epub 2012 Jul 12.

Abstract

BACKGROUND

Engineered heart tissue (EHT) is being developed for clinical implantation in heart failure or congenital heart disease and therefore requires a comprehensive functional characterization and scale-up of EHT. Here we explored the effects of scale-up of self-organizing EHT and present detailed electrophysiologic and contractile functional characterization.

METHODS

Fibers from EHT were generated from self-organizing neonatal rat cardiac cells (0.5×10(6) to 3×10(6)/fiber) on fibrin. We characterized contractile patterns and measured contractile function using a force transducer, and assessed force-length relationship, maximal force generation, and rate of force generation. Action potential and conduction velocity of EHT were measured with optical mapping, and transcript levels of myosin heavy chain beta were measured by reverse transcriptase-polymerase chain reaction.

RESULTS

Increasing the cell number per construct resulted in an increase in fiber volume. The force-length relationship was negatively impacted by increasing cell number. Maximal force generation and rate of force generation were also abrogated with increasing cell number. This decrease was not likely attributable to a selective expansion of noncontractile cells as myosin heavy chain beta levels were stable. Irregular contractile behavior was more prevalent in constructs with more cells. Engineered heart tissue (1×10(6)/construct) had an action potential duration of 140.2 milliseconds and a conduction velocity of 23.2 cm/s.

CONCLUSIONS

Engineered heart tissue displays physiologically relevant features shared with native myocardium. Engineered heart tissue scale-up by increasing cell number abrogates contractile function, possibly as a result of suboptimal cardiomyocyte performance in the absence of vasculature. Finally, conduction velocity approaches that of native myocardium without any electrical or mechanical conditioning, suggesting that the self-organizing method may be superior to other rigid scaffold-based EHT.

摘要

背景

工程心脏组织 (EHT) 正在开发用于心力衰竭或先天性心脏病的临床植入,因此需要对 EHT 进行全面的功能表征和放大。在这里,我们探讨了自组织 EHT 放大的效果,并呈现了详细的电生理和收缩功能特征。

方法

纤维从 EHT 从自组织新生大鼠心脏细胞(0.5×10(6)至 3×10(6)/纤维)在纤维蛋白上产生。我们使用力传感器来描述收缩模式和测量收缩功能,并评估力-长度关系、最大力生成和力生成速率。EHT 的动作电位和传导速度用光学映射测量,肌球蛋白重链β的转录水平用逆转录聚合酶链反应测量。

结果

增加每个构建体的细胞数量会导致纤维体积增加。力-长度关系随着细胞数量的增加而受到负面影响。最大力生成和力生成速率也随着细胞数量的增加而被废除。这种减少不太可能归因于非收缩细胞的选择性扩张,因为肌球蛋白重链β水平保持稳定。随着细胞数量的增加,不规则的收缩行为更为普遍。工程心脏组织(1×10(6)/构建体)的动作电位持续时间为 140.2 毫秒,传导速度为 23.2 cm/s。

结论

工程心脏组织显示出与天然心肌共享的生理相关特征。通过增加细胞数量来放大工程心脏组织会破坏收缩功能,可能是由于缺乏脉管系统导致心肌细胞性能不佳。最后,传导速度接近天然心肌,无需任何电或机械调节,表明自组织方法可能优于其他刚性支架 EHT。

相似文献

1
Contractile and electrophysiologic characterization of optimized self-organizing engineered heart tissue.
Ann Thorac Surg. 2012 Oct;94(4):1241-8; discussion 1249. doi: 10.1016/j.athoracsur.2012.04.098. Epub 2012 Jul 12.
3
Computational analysis of contractility in engineered heart tissue.
IEEE Trans Biomed Eng. 2012 May;59(5):1429-35. doi: 10.1109/TBME.2012.2187899. Epub 2012 Feb 22.
4
Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice.
J Mol Cell Cardiol. 2013 Oct;63:189-98. doi: 10.1016/j.yjmcc.2013.07.011. Epub 2013 Jul 26.
5
Dynamic culture yields engineered myocardium with near-adult functional output.
Biomaterials. 2016 Dec;111:66-79. doi: 10.1016/j.biomaterials.2016.09.024. Epub 2016 Sep 30.
7
Engineered heart tissue: a novel tool to study the ischemic changes of the heart in vitro.
PLoS One. 2010 Feb 17;5(2):e9275. doi: 10.1371/journal.pone.0009275.
8
Dynamic Control of Contractile Force in Engineered Heart Tissue.
IEEE Trans Biomed Eng. 2023 Jul;70(7):2237-2245. doi: 10.1109/TBME.2023.3239594. Epub 2023 Jun 19.
9
Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts.
Nat Med. 2006 Apr;12(4):452-8. doi: 10.1038/nm1394. Epub 2006 Apr 2.
10
Tissue engineering of a differentiated cardiac muscle construct.
Circ Res. 2002 Feb 8;90(2):223-30. doi: 10.1161/hh0202.103644.

引用本文的文献

1
Fibroblasts Slow Conduction Velocity in a Reconstituted Tissue Model of Fibrotic Cardiomyopathy.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):3022-3028. doi: 10.1021/acsbiomaterials.6b00576. Epub 2016 Oct 18.
2
Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.
Biotechnol Adv. 2017 Jan-Feb;35(1):77-94. doi: 10.1016/j.biotechadv.2016.12.002. Epub 2016 Dec 20.
3
Dynamic culture yields engineered myocardium with near-adult functional output.
Biomaterials. 2016 Dec;111:66-79. doi: 10.1016/j.biomaterials.2016.09.024. Epub 2016 Sep 30.
4
Striated muscle function, regeneration, and repair.
Cell Mol Life Sci. 2016 Nov;73(22):4175-4202. doi: 10.1007/s00018-016-2285-z. Epub 2016 Jun 6.
5
Tissue constructs: platforms for basic research and drug discovery.
Interface Focus. 2016 Feb 6;6(1):20150095. doi: 10.1098/rsfs.2015.0095.
6
Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart.
ACS Nano. 2014 Oct 28;8(10):9822-32. doi: 10.1021/nn503693h. Epub 2014 Sep 29.
7
Use of myocardial matrix in a chitosan-based full-thickness heart patch.
Tissue Eng Part A. 2014 Jul;20(13-14):1877-87. doi: 10.1089/ten.TEA.2013.0620. Epub 2014 Feb 24.
8
Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.
Tissue Eng Part A. 2014 Jun;20(11-12):1654-67. doi: 10.1089/ten.TEA.2013.0355. Epub 2014 Apr 7.
9
Engineering challenges for instrumenting and controlling integrated organ-on-chip systems.
IEEE Trans Biomed Eng. 2013 Mar;60(3):682-90. doi: 10.1109/TBME.2013.2244891. Epub 2013 Feb 1.

本文引用的文献

1
Isolated cardiac muscle assays.
Curr Protoc Pharmacol. 2001 May;Chapter 4:Unit4.3. doi: 10.1002/0471141755.ph0403s00.
2
Vascularization is the key challenge in tissue engineering.
Adv Drug Deliv Rev. 2011 Apr 30;63(4-5):300-11. doi: 10.1016/j.addr.2011.03.004. Epub 2011 Mar 17.
3
Human thymus mesenchymal stromal cells augment force production in self-organized cardiac tissue.
Ann Thorac Surg. 2010 Sep;90(3):796-803; discussion 803-4. doi: 10.1016/j.athoracsur.2010.04.080.
4
Kinetics of cardiac muscle contraction and relaxation are linked and determined by properties of the cardiac sarcomere.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1092-9. doi: 10.1152/ajpheart.00417.2010. Epub 2010 Jul 23.
5
Optical mapping of impulse propagation in engineered cardiac tissue.
Tissue Eng Part A. 2009 Apr;15(4):851-60. doi: 10.1089/ten.tea.2008.0223.
6
Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
J Biomed Mater Res A. 2007 Mar 1;80(3):719-31. doi: 10.1002/jbm.a.31090.
7
Reconstitution of the Frank-Starling mechanism in engineered heart tissues.
Biophys J. 2006 Sep 1;91(5):1800-10. doi: 10.1529/biophysj.105.065961. Epub 2006 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验