IEEE Trans Biomed Eng. 2023 Jul;70(7):2237-2245. doi: 10.1109/TBME.2023.3239594. Epub 2023 Jun 19.
Three-dimensional engineered heart tissues (EHTs) derived from human induced pluripotent stem cells (iPSCs) have become an important resource for both drug toxicity screening and research on heart disease. A key metric of EHT phenotype is the contractile (twitch) force with which the tissue spontaneously beats. It is well-known that cardiac muscle contractility - its ability to do mechanical work - depends on tissue prestrain (preload) and external resistance (afterload).
Here, we demonstrate a technique to control afterload while monitoring contractile force exerted by EHTs.
We developed an apparatus that can regulate EHT boundary conditions using real-time feedback control. The system is comprised of a pair of piezoelectric actuators that can strain the scaffold and a microscope that can measure EHT force and length. Closed loop control allows dynamic regulation of effective EHT boundary stiffness.
When controlled to switch instantaneously from auxotonic to isometric boundary conditions, EHT twitch force immediately doubled. Changes in EHT twitch force as a function of effective boundary stiffness were characterized and compared to twitch force in auxotonic conditions.
EHT contractility can be regulated dynamically through feedback control of effective boundary stiffness.
The capacity to alter the mechanical boundary conditions of an engineered tissue dynamically offers a new way to probe tissue mechanics. This could be used to mimic afterload changes that occur naturally in disease, or to improve mechanical techniques for EHT maturation.
源自人类诱导多能干细胞(iPSC)的三维工程心脏组织(EHT)已成为药物毒性筛选和心脏病研究的重要资源。EHT 表型的一个关键指标是组织自发跳动的收缩(抽搐)力。众所周知,心肌收缩性 - 其进行机械功的能力 - 取决于组织预应变(预载)和外部阻力(后负荷)。
在这里,我们展示了一种在监测 EHT 收缩力的同时控制后负荷的技术。
我们开发了一种可以使用实时反馈控制来调节 EHT 边界条件的设备。该系统由一对可以对支架进行应变的压电致动器和一台可以测量 EHT 力和长度的显微镜组成。闭环控制允许有效 EHT 边界刚度的动态调节。
当受控从等张切换到等速边界条件时,EHT 抽搐力立即增加一倍。EHT 抽搐力作为有效边界刚度函数的变化特征,并与等张条件下的抽搐力进行比较。
EHT 收缩性可以通过有效边界刚度的反馈控制动态调节。
动态改变工程组织的机械边界条件的能力为研究组织力学提供了一种新方法。这可以用于模拟疾病中自然发生的后负荷变化,或改进 EHT 成熟的机械技术。