Suppr超能文献

心肌基质在基于壳聚糖的全层心脏补片中的应用。

Use of myocardial matrix in a chitosan-based full-thickness heart patch.

作者信息

Pok Seokwon, Benavides Omar M, Hallal Patrick, Jacot Jeffrey G

机构信息

1 Department of Bioengineering, Rice University , Houston, Texas.

出版信息

Tissue Eng Part A. 2014 Jul;20(13-14):1877-87. doi: 10.1089/ten.TEA.2013.0620. Epub 2014 Feb 24.

Abstract

A novel cardiac scaffold comprised of decellularized porcine heart matrix was investigated for use as a biodegradable patch with a potential for surgical reconstruction of the right ventricular outflow tract. Powdered heart matrix solution was blended with chitosan and lyophilized to form three-dimensional scaffolds. For this investigation, we examined the influence of different blending ratios of heart matrix to chitosan on porosity and mechanical properties, then gene expression and electrophysiological function of invading neonatal rat ventricular myocytes (NRVM) compared to type-A gelatin/chitosan composite scaffolds. Heart matrix/chitosan-blended hydrogels (1.6 mg/mL heart matrix) had similar porosity (109±34 μm), and elastic modulus (13.2±4.0 kPa) as previously published gelatin/chitosan scaffolds. Heart matrix/chitosan hydrogels maintained>80% viability and had higher NRVM retention (∼1000 cells/mm(2)) than gelatin/chitosan scaffolds. There was a significant increase in α-myosin heavy chain and connexin-43 expression in NRVM cultured on heart matrix/chitosan scaffolds after 14 days compared with gelatin/chitosan scaffolds. Further, heart matrix/chitosan scaffolds had significantly higher conduction velocity (12.6±4.9 cm/s) and contractile stress (0.79±0.13 mN/mm(2)) than gelatin/chitosan scaffolds. In summary, NRVM cultured on heart matrix scaffold showed improvements in contractile and electrophysiological function.

摘要

研究了一种由脱细胞猪心脏基质组成的新型心脏支架,用作可生物降解的补片,具有用于右心室流出道手术重建的潜力。将心脏基质粉末溶液与壳聚糖混合并冻干以形成三维支架。在本研究中,我们研究了心脏基质与壳聚糖不同混合比例对孔隙率和力学性能的影响,然后将侵入的新生大鼠心室肌细胞(NRVM)与A型明胶/壳聚糖复合支架相比,研究其基因表达和电生理功能。心脏基质/壳聚糖混合水凝胶(1.6mg/mL心脏基质)具有与先前发表的明胶/壳聚糖支架相似的孔隙率(109±34μm)和弹性模量(13.2±4.0kPa)。心脏基质/壳聚糖水凝胶保持>80%的活力,并且比明胶/壳聚糖支架具有更高的NRVM保留率(约1000个细胞/mm²)。与明胶/壳聚糖支架相比,在心脏基质/壳聚糖支架上培养14天后,NRVM中α-肌球蛋白重链和连接蛋白-43的表达显著增加。此外,心脏基质/壳聚糖支架的传导速度(12.6±4.9cm/s)和收缩应力(0.79±0.13mN/mm²)明显高于明胶/壳聚糖支架。总之,在心脏基质支架上培养的NRVM在收缩和电生理功能方面有改善。

相似文献

1
Use of myocardial matrix in a chitosan-based full-thickness heart patch.
Tissue Eng Part A. 2014 Jul;20(13-14):1877-87. doi: 10.1089/ten.TEA.2013.0620. Epub 2014 Feb 24.
2
A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering.
Acta Biomater. 2013 Mar;9(3):5630-42. doi: 10.1016/j.actbio.2012.10.032. Epub 2012 Nov 2.
6
Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.
Adv Healthc Mater. 2016 Jan 7;5(1):108-18. doi: 10.1002/adhm.201500005. Epub 2015 Apr 16.
7
Decellularized Annulus Fibrosus Matrix/Chitosan Hybrid Hydrogels with Basic Fibroblast Growth Factor for Annulus Fibrosus Tissue Engineering.
Tissue Eng Part A. 2019 Dec;25(23-24):1605-1613. doi: 10.1089/ten.TEA.2018.0297. Epub 2019 Nov 21.
8
Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
Acta Biomater. 2015 Mar;14:11-21. doi: 10.1016/j.actbio.2014.11.042. Epub 2014 Nov 26.
9
Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
Biomaterials. 2012 Apr;33(10):2848-57. doi: 10.1016/j.biomaterials.2011.12.028. Epub 2012 Jan 17.
10
Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering.
Biomacromolecules. 2014 Feb 10;15(2):635-43. doi: 10.1021/bm401679q. Epub 2014 Jan 28.

引用本文的文献

1
The Current State of Extracellular Matrix Therapy for Ischemic Heart Disease.
Med Sci (Basel). 2024 Jan 29;12(1):8. doi: 10.3390/medsci12010008.
2
Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review.
Molecules. 2023 Feb 17;28(4):1920. doi: 10.3390/molecules28041920.
3
The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives.
Bioengineering (Basel). 2023 Jan 27;10(2):165. doi: 10.3390/bioengineering10020165.
4
Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes Angiogenesis.
ACS Biomater Sci Eng. 2023 Feb 13;9(2):877-888. doi: 10.1021/acsbiomaterials.2c01148. Epub 2023 Jan 11.
5
Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration.
Cell Tissue Res. 2022 Oct;390(1):71-92. doi: 10.1007/s00441-022-03663-4. Epub 2022 Jul 5.
6
Biomaterials-based Approaches for Cardiac Regeneration.
Korean Circ J. 2021 Dec;51(12):943-960. doi: 10.4070/kcj.2021.0291.
7
Bioactive Polymeric Materials for the Advancement of Regenerative Medicine.
J Funct Biomater. 2021 Feb 20;12(1):14. doi: 10.3390/jfb12010014.
8
Engineering Myocardium for Heart Regeneration-Advancements, Considerations, and Future Directions.
Front Cardiovasc Med. 2020 Oct 15;7:586261. doi: 10.3389/fcvm.2020.586261. eCollection 2020.
9
Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium.
Biomaterials. 2020 Oct;256:120204. doi: 10.1016/j.biomaterials.2020.120204. Epub 2020 Jun 22.
10
Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity.
Front Bioeng Biotechnol. 2020 May 29;8:520. doi: 10.3389/fbioe.2020.00520. eCollection 2020.

本文引用的文献

1
Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes.
Biomaterials. 2013 Jul;34(23):5813-20. doi: 10.1016/j.biomaterials.2013.04.026. Epub 2013 May 2.
3
Organ explant culture of neonatal rat ventricles: a new model to study gene and cell therapy.
PLoS One. 2013;8(3):e59290. doi: 10.1371/journal.pone.0059290. Epub 2013 Mar 13.
4
Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment.
Acta Biomater. 2013 Jul;9(7):7191-9. doi: 10.1016/j.actbio.2013.02.021. Epub 2013 Feb 27.
5
Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction.
Sci Transl Med. 2013 Feb 20;5(173):173ra25. doi: 10.1126/scitranslmed.3005503.
6
Decellularization for whole organ bioengineering.
Biomed Mater. 2013 Feb;8(1):014106. doi: 10.1088/1748-6041/8/1/014106. Epub 2013 Jan 25.
8
A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering.
Acta Biomater. 2013 Mar;9(3):5630-42. doi: 10.1016/j.actbio.2012.10.032. Epub 2012 Nov 2.
9
Decellularized tracheal matrix scaffold for tissue engineering.
Plast Reconstr Surg. 2012 Sep;130(3):532-540. doi: 10.1097/PRS.0b013e31825dc084.
10
Scale-dependent mechanical properties of native and decellularized liver tissue.
Biomech Model Mechanobiol. 2013 Jun;12(3):569-80. doi: 10.1007/s10237-012-0426-3. Epub 2012 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验