Suppr超能文献

死后糖原分解是磷酸解和水解的结合。

Post mortem glycogenolysis is a combination of phosphorolysis and hydrolysis.

作者信息

Calder P C, Geddes R

机构信息

Department of Biochemistry, University of Auckland, New Zealand.

出版信息

Int J Biochem. 1990;22(8):847-56. doi: 10.1016/0020-711x(90)90288-e.

Abstract
  1. Glycogen, glucose, lactate and glycogen phosphorylase concentrations and the activities of glycogen phosphorylase a and acid 1,4-alpha-glucosidase were measured at various times up to 120 min after death in the liver and skeletal muscle of Wistar and gsd/gsd (phosphorylase b kinase deficient) rats and Wistar rats treated with the acid alpha-glucosidase inhibitor acarbose. 2. In all tissues glycogen was degraded rapidly and was accompanied by an increase in tissue glucose and lactate concentrations and a lowering of tissue pH. In the liver of Wistar and acarbose-treated Wistar rats and in the skeletal muscle of all rats glycogen loss proceeded initially very rapidly before slowing. In the gsd/gsd rat liver glycogenolysis proceeded at a linear rate throughout the incubation period. Over 120 min 60, 20 and 50% of the hepatic glycogen store was degraded in the livers of Wistar, gsd/gsd and acarbose-treated Wistar rats, respectively. All 3 types of rat degraded skeletal muscle glycogen at the same rate and to the same extent (82% degraded over 2 hr). 3. In Wistar rat liver and skeletal muscle glycogen phosphorylase was activated soon after death and the activity of phosphorylase a remained well above the zero-time level at all later time points, even when the rate of glycogenolysis had slowed significantly. Liver and skeletal muscle acid alpha-glucosidase activities were unchanged after death. 4. The decreased rate and extent of hepatic glycogenolysis in both the gsd/gsd and acarbose-treated rats suggests that this process is a combination of phosphorolysis and hydrolysis. 5. Glycogen was purified from Wistar liver and skeletal muscle at various times post mortem and its structure investigated. Fine structural analysis revealed progressive shortening of the outer chains of the glycogen from both tissues, indicative of random, lysosomal hydrolysis. Analysis of molecular weight distributions showed inhomogeneity in the glycogen loss; in both tissues high molecular weight glycogen was preferentially degraded. This material is concentrated in lysosomes of both skeletal muscle and liver. These results are consistent with a role for lysosomal hydrolysis in glycogen degradation.
摘要
  1. 在Wistar大鼠、gsd/gsd(磷酸化酶b激酶缺陷型)大鼠以及用酸性α-葡萄糖苷酶抑制剂阿卡波糖处理的Wistar大鼠死亡后的120分钟内的不同时间点,测定了肝脏和骨骼肌中糖原、葡萄糖、乳酸以及糖原磷酸化酶的浓度,以及糖原磷酸化酶a和酸性1,4-α-葡萄糖苷酶的活性。2. 在所有组织中,糖原迅速降解,同时组织葡萄糖和乳酸浓度增加,组织pH降低。在Wistar大鼠和用阿卡波糖处理的Wistar大鼠的肝脏以及所有大鼠的骨骼肌中,糖原损失最初非常迅速,随后减缓。在gsd/gsd大鼠肝脏中,糖原分解在整个孵育期以线性速率进行。在120分钟内,Wistar大鼠、gsd/gsd大鼠和用阿卡波糖处理的Wistar大鼠肝脏中肝糖原储备分别有60%、20%和50%被降解。所有3种类型的大鼠骨骼肌糖原降解速率和程度相同(2小时内82%被降解)。3. 在Wistar大鼠肝脏和骨骼肌中,糖原磷酸化酶在死亡后很快被激活,即使糖原分解速率显著减缓,在所有后续时间点磷酸化酶a的活性仍远高于零时水平。肝脏和骨骼肌酸性α-葡萄糖苷酶活性在死亡后未发生变化。4. gsd/gsd大鼠和用阿卡波糖处理的大鼠肝脏糖原分解速率和程度降低,表明该过程是磷酸解和水解的结合。5. 在死后不同时间从Wistar大鼠肝脏和骨骼肌中纯化糖原,并研究其结构。精细结构分析显示,来自这两种组织的糖原外链逐渐缩短,表明存在随机的溶酶体水解。分子量分布分析显示糖原损失存在不均匀性;在这两种组织中,高分子量糖原优先被降解。这种物质集中在骨骼肌和肝脏的溶酶体中。这些结果与溶酶体水解在糖原降解中的作用一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验