Suppr超能文献

通过计算植物育种融合传统方法与现代技术。

Merging traditional practices and modern technology through computational plant breeding.

作者信息

Yoosefzadeh-Najafabadi Mohsen

机构信息

Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.

出版信息

Plant Physiol. 2025 Sep 1;199(1). doi: 10.1093/plphys/kiaf355.

Abstract

Plant breeding has transitioned from its ancient agrarian roots to a modern, sophisticated discipline blending advanced genetic and computational techniques. Initially led by intuition and basic selection, the field was revolutionized in the 19th century by Gregor Mendel's principles. Today, plant breeding utilizes multiomics approaches and data science techniques to navigate vast amounts of data and deepen our understanding of the biological mechanisms behind specific traits. To tackle the challenges of big data, the discipline now incorporates computational biology, data science, and bioinformatics, which have become integral to routine plant breeding practices. As plant breeders have explored these promising fields, many have adopted titles such as "plant breeder and computational biologist" or "plant breeder and bioinformatician." However, these titles may lead to misconceptions about expertise, as breeders often apply a blend of these skills without specializing fully in each domain. Recognizing this, it is crucial to establish a clear identity for the evolving skill set of modern plant breeders. In this review, I explore the historical evolution of plant breeding, highlighting the transformative role of computational biology. Furthermore, I address the potential pitfalls of adding titles to plant breeding and propose the adoption of the term "computational plant breeding." This term more accurately reflects the integrated application of computational tools and biological insights in plant breeding. By redefining this emerging field, we can better appreciate its unique contributions and prepare for future advancements in agricultural science.

摘要

植物育种已从其古老的农业根源发展成为一门融合先进遗传和计算技术的现代精密学科。该领域最初由直觉和基本选择主导,19世纪因格雷戈尔·孟德尔的遗传学原理而发生了变革。如今,植物育种利用多组学方法和数据科学技术来处理海量数据,并加深我们对特定性状背后生物学机制的理解。为应对大数据带来的挑战,该学科现在纳入了计算生物学、数据科学和生物信息学,这些已成为常规植物育种实践不可或缺的一部分。随着植物育种家探索这些前景广阔的领域,许多人采用了诸如“植物育种家兼计算生物学家”或“植物育种家兼生物信息学家”之类的头衔。然而,这些头衔可能会导致对专业知识的误解,因为育种家通常会综合运用这些技能,而并非完全专注于每个领域。认识到这一点,为现代植物育种家不断发展的技能组合确立明确的身份至关重要。在这篇综述中,我探讨了植物育种的历史演变,强调了计算生物学的变革性作用。此外,我还讨论了给植物育种添加头衔可能存在的潜在陷阱,并提议采用“计算植物育种”这一术语。这个术语更准确地反映了计算工具和生物学见解在植物育种中的综合应用。通过重新定义这个新兴领域,我们能够更好地认识到它的独特贡献,并为农业科学的未来发展做好准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ab3/12418775/cd794d841a08/kiaf355f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验