Zatybekov Alibek, Genievskaya Yuliya, Fang Chao, Abugalieva Saule, Turuspekov Yerlan
Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan.
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, 510006, China.
BMC Genomics. 2025 Sep 3;26(1):802. doi: 10.1186/s12864-025-12024-8.
Soybean (Glycine max) is a globally important crop, yet its genetic diversity remains underutilized in breeding programs, particularly in emerging production regions such as Kazakhstan. As Kazakhstan expands its soybean cultivation, a detailed understanding of the genetic diversity and population structure of both local and international germplasm is critical for developing regionally adapted cultivars.
This study analyzed 694 soybean accessions - including landraces, modern cultivars, and wild relatives (Glycine soja) - using 80,971 high-quality SNPs obtained via whole-genome resequencing. Population structure analysis, PCA, and phylogenetic clustering consistently distinguished wild from cultivated groups and identified transitional genotypes bridging the two. Kazakhstan's accessions showed closest genetic similarity to European and North American cultivars, reflecting historical cultivar exchange and breeding for temperate adaptation. However, Kazakhstan's accessions exhibited the lowest within-group diversity, underscoring a narrow genetic base.
These findings reveal the genetic structure and evolutionary relationships within a global soybean collection and highlight the limited genetic diversity of Kazakhstan's germplasm. The results suggest two complementary breeding strategies for Kazakhstan: (1) broadening the genetic base through the introduction of diverse foreign and wild germplasm, and (2) increasing the frequency of favorable alleles already present in locally adapted lines. This integrated approach can support the development of high-performing, resilient cultivars tailored to Kazakhstan's agricultural environments.
大豆(Glycine max)是一种全球重要的作物,但其遗传多样性在育种计划中仍未得到充分利用,特别是在哈萨克斯坦等新兴产区。随着哈萨克斯坦扩大其大豆种植面积,详细了解本地和国际种质的遗传多样性和群体结构对于培育适应该地区的品种至关重要。
本研究利用通过全基因组重测序获得的80,971个高质量单核苷酸多态性(SNP),分析了694份大豆种质——包括地方品种、现代品种和野生近缘种(Glycine soja)。群体结构分析、主成分分析(PCA)和系统发育聚类一致地区分了野生群体和栽培群体,并鉴定出连接两者的过渡基因型。哈萨克斯坦的种质与欧洲和北美品种表现出最密切的遗传相似性,反映了历史上的品种交流以及为适应温带环境而进行的育种。然而,哈萨克斯坦的种质在群体内表现出最低的多样性,凸显了其狭窄的遗传基础。
这些发现揭示了全球大豆种质库中的遗传结构和进化关系,并突出了哈萨克斯坦种质有限的遗传多样性。结果为哈萨克斯坦提出了两种互补的育种策略:(1)通过引入多样的外来和野生种质拓宽遗传基础;(2)增加本地适应品系中已有有利等位基因的频率。这种综合方法可以支持培育适合哈萨克斯坦农业环境的高性能、抗逆性强的品种。