Suppr超能文献

无法分解半乳糖会导致根瘤菌竞争根瘤定殖点的能力增强。

Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti.

机构信息

Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

J Bacteriol. 2012 Sep;194(18):5044-53. doi: 10.1128/JB.00982-12. Epub 2012 Jul 13.

Abstract

A mutant unable to utilize galactose was isolated in Sinorhizobium meliloti strain Rm1021. The mutation was found to be in a gene annotated dgoK1, a putative 2-keto-3-deoxygalactonokinase. The genetic region was isolated on a complementing cosmid and subsequently characterized. Based on genetic and bioinformatic evidence, the locus encodes all five enzymes (galD, dgoK, dgoA, SMc00883, and ilvD1) involved in the De Ley-Doudoroff pathway for galactose catabolism. Although all five genes are present, genetic analysis suggests that the galactonase (SMc00883) and the dehydratase (ilvD1) are dispensable with respect to the ability to catabolize galactose. In addition, we show that the transport of galactose is partially facilitated by the arabinose transporter (AraABC) and that both glucose and galactose compete with arabinose for transport. Quantitative reverse transcription-PCR (qRT-PCR) data show that in a dgoK background, the galactose locus is constitutively expressed, and the induction of the ara locus seems to be enhanced. Assays of competition for nodule occupancy show that the inability to catabolize galactose is correlated with an increased ability to compete for nodule occupancy.

摘要

在苜蓿中华根瘤菌 Rm1021 中分离到一株不能利用半乳糖的突变体。该突变被发现位于一个注释为 dgoK1 的基因中,该基因推测为 2-酮-3-脱氧半乳糖激酶。该基因区域被分离在一个互补的 cosmid 上,并随后进行了表征。基于遗传和生物信息学证据,该基因座编码参与半乳糖分解代谢的 De Ley-Doudoroff 途径的所有五种酶(galD、dgoK、dgoA、SMc00883 和 ilvD1)。尽管存在所有五个基因,但遗传分析表明,半乳糖酶(SMc00883)和脱水酶(ilvD1)对于半乳糖的分解代谢能力是可有可无的。此外,我们还表明,半乳糖的运输部分由阿拉伯糖转运蛋白(AraABC)促进,并且葡萄糖和半乳糖都与阿拉伯糖竞争运输。定量反转录-PCR(qRT-PCR)数据显示,在 dgoK 背景下,半乳糖基因座持续表达,ara 基因座的诱导似乎增强。对竞争结瘤占据的测定表明,不能分解半乳糖与增加竞争结瘤占据的能力相关。

相似文献

1
Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti.
J Bacteriol. 2012 Sep;194(18):5044-53. doi: 10.1128/JB.00982-12. Epub 2012 Jul 13.
3
Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism.
Microbiology (Reading). 2007 Mar;153(Pt 3):727-736. doi: 10.1099/mic.0.29148-0.
4
Inability to Catabolize Rhamnose by Rm1021 Affects Competition for Nodule Occupancy.
Microorganisms. 2022 Mar 29;10(4):732. doi: 10.3390/microorganisms10040732.
7
Importance of trehalose biosynthesis for Sinorhizobium meliloti Osmotolerance and nodulation of Alfalfa roots.
J Bacteriol. 2009 Dec;191(24):7490-9. doi: 10.1128/JB.00725-09. Epub 2009 Oct 16.
8
Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp.
Microbiology (Reading). 2007 Feb;153(Pt 2):388-398. doi: 10.1099/mic.0.29214-0.
10
Most Extracytoplasmic Function Sigma Factors Control Accessory Functions.
mSphere. 2018 Oct 10;3(5):e00454-18. doi: 10.1128/mSphereDirect.00454-18.

引用本文的文献

2
Inability to Catabolize Rhamnose by Rm1021 Affects Competition for Nodule Occupancy.
Microorganisms. 2022 Mar 29;10(4):732. doi: 10.3390/microorganisms10040732.
3
L-arabinose induces the formation of viable non-proliferating spheroplasts in .
Appl Environ Microbiol. 2021 Mar 1;87(5). doi: 10.1128/AEM.02305-20. Epub 2020 Dec 18.
4
Optimizing legume symbioses by simultaneous measurement of rhizobial competitiveness and N fixation in nodules.
Proc Natl Acad Sci U S A. 2020 May 5;117(18):9822-9831. doi: 10.1073/pnas.1921225117. Epub 2020 Apr 21.
6
A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in .
Genetics. 2017 Nov;207(3):961-974. doi: 10.1534/genetics.117.300212. Epub 2017 Aug 29.
8
A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria.
PLoS Genet. 2015 Jun 4;11(6):e1005280. doi: 10.1371/journal.pgen.1005280. eCollection 2015 Jun.

本文引用的文献

2
Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation.
Microbiology (Reading). 2012 May;158(Pt 5):1369-1378. doi: 10.1099/mic.0.057281-0. Epub 2012 Feb 16.
3
Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens.
J Bacteriol. 2011 Dec;193(23):6586-96. doi: 10.1128/JB.05790-11. Epub 2011 Oct 7.
4
The rules of engagement in the legume-rhizobial symbiosis.
Annu Rev Genet. 2011;45:119-44. doi: 10.1146/annurev-genet-110410-132549. Epub 2011 Aug 11.
5
Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation.
Appl Environ Microbiol. 2010 Dec;76(24):7972-80. doi: 10.1128/AEM.01972-10. Epub 2010 Oct 22.
6
A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti.
Microbiology (Reading). 2010 Oct;156(Pt 10):2970-2981. doi: 10.1099/mic.0.041905-0. Epub 2010 Jul 29.
7
The integrated microbial genomes system: an expanding comparative analysis resource.
Nucleic Acids Res. 2010 Jan;38(Database issue):D382-90. doi: 10.1093/nar/gkp887. Epub 2009 Oct 28.
8
Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens.
J Bacteriol. 2009 Sep;191(18):5802-13. doi: 10.1128/JB.00451-09. Epub 2009 Jul 24.
9
InterPro: the integrative protein signature database.
Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5. doi: 10.1093/nar/gkn785. Epub 2008 Oct 21.
10
Formate-dependent autotrophic growth in Sinorhizobium meliloti.
J Bacteriol. 2008 Oct;190(19):6409-18. doi: 10.1128/JB.00757-08. Epub 2008 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验