Suppr超能文献

与 Myc 相关的 E3 泛素连接酶蛋白(Pam)通过 N 端和 C 端结构域在体内调节哺乳动物/雷帕霉素靶蛋白复合物 1(mTORC1)信号。

The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains.

机构信息

Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

J Biol Chem. 2012 Aug 31;287(36):30063-72. doi: 10.1074/jbc.M112.353987. Epub 2012 Jul 13.

Abstract

Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

摘要

Pam 及其同源物(PHR 蛋白家族)是大型 E3 泛素连接酶,在哺乳动物、斑马鱼、果蝇和秀丽隐杆线虫中发挥调节突触形成和生长的作用。Phr1 缺陷型小鼠模型(分别在 N 端假定的鸟嘌呤交换因子区域和 C 端泛素连接酶区域缺失的 Phr1(Δ8,9)和 Phr1(Magellan))表现出轴突导向/生长缺陷和中枢神经系统中主要轴突束的显著缺陷。我们之前的研究表明 Pam 与结节性硬化复合物(TSC)蛋白相关,泛素化 TSC2 并调节哺乳动物/雷帕霉素靶蛋白(mTOR)信号。在这里,我们研究了 TSC/mTOR 复合物 1(mTORC1)信号通路在 Phr1 缺陷型小鼠模型中的潜在参与。我们观察到 Phr1(Δ8,9)和 Phr1(Magellan)小鼠模型的大脑中 mTORC1 信号减弱。我们的结果表明 Pam 通过两个不同的结构域在体外和体内调节 TSC/mTOR 信号。为了进一步确定 Pam 是否通过两个功能上独立的结构域调节 mTORC1,我们在 Phr1(Δ8,9)和 Phr1(Magellan)小鼠之间进行杂合突变体杂交,以生成一个复合杂合模型,以确定这两个结构域是否可以互补。在双突变体(Phr1(Δ8,9/Mag))的大脑中,mTORC1 信号没有减弱,这证实了 Pam 通过两个功能结构域对 mTORC1 途径进行双重调节。我们的结果还表明,尽管 mTORC1 信号的失调可能是胼胝体缺陷的原因,但 Phr1 缺乏时观察到的其他神经发育缺陷与 mTORC1 信号无关。含有 Pam-Fbxo45 的泛素连接酶复合物可能靶向其他突触和轴突蛋白,这可以解释在 Phr1 和 Fbxo45 缺乏时观察到的重叠神经发育缺陷。

相似文献

引用本文的文献

10
Autophagy in axonal and presynaptic development.自噬在轴突和突触前发育中的作用。
Curr Opin Neurobiol. 2021 Aug;69:139-148. doi: 10.1016/j.conb.2021.03.011. Epub 2021 Apr 30.

本文引用的文献

1
mTOR signaling in disease.mTOR 信号通路与疾病。
Curr Opin Cell Biol. 2011 Dec;23(6):744-55. doi: 10.1016/j.ceb.2011.09.003. Epub 2011 Sep 29.
3
TSC1/TSC2 signaling in the CNS.中枢神经系统中的 TSC1/TSC2 信号传导。
FEBS Lett. 2011 Apr 6;585(7):973-80. doi: 10.1016/j.febslet.2011.02.001. Epub 2011 Feb 15.
5
PHRs: bridging axon guidance, outgrowth and synapse development.PHRs:连接轴突导向、生长和突触发育。
Curr Opin Neurobiol. 2010 Feb;20(1):100-7. doi: 10.1016/j.conb.2009.12.007. Epub 2010 Jan 14.
6
mTOR signaling: at the crossroads of plasticity, memory and disease.mTOR 信号通路:可塑性、记忆与疾病的交汇点。
Trends Neurosci. 2010 Feb;33(2):67-75. doi: 10.1016/j.tins.2009.11.003. Epub 2009 Dec 4.
7
A synaptic trek to autism.自闭症的突触之旅。
Curr Opin Neurobiol. 2009 Apr;19(2):231-4. doi: 10.1016/j.conb.2009.06.003. Epub 2009 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验