Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA 90024, USA.
IEEE Trans Biomed Eng. 2013 Jan;60(1):174-8. doi: 10.1109/TBME.2012.2208111. Epub 2012 Jul 11.
Large-scale activity monitoring is a core component of systems aiming to improve our ability to manage fitness, deliver care, and diagnose conditions. While much research has been devoted to the accurate classification of motion, the challenges arising from scaling to large communities have received little attention. This paper introduces the problem of scaling, and addresses two of the most important issues: enabling robust large-scale ground-truth acquisition and building a common database for systems comparison. This paper presents a voice powered mobile acquisition system with efficient annotation tools and an extendable online searchable activity database with 331 datasets totaling over 700 h with 8 sensing modalities and 15 activities.
大规模活动监测是旨在提高我们管理健身、提供护理和诊断疾病能力的系统的核心组成部分。虽然已经有大量研究致力于运动的精确分类,但对于扩展到大型社区所带来的挑战关注甚少。本文介绍了扩展的问题,并解决了两个最重要的问题:实现稳健的大规模真实数据采集和构建用于系统比较的通用数据库。本文提出了一种基于语音的移动采集系统,具有高效的标注工具和一个可扩展的在线可搜索活动数据库,其中包含 331 个数据集,总时长超过 700 小时,具有 8 种传感模式和 15 种活动。