Suppr超能文献

H3K27 去甲基酶 Utx 调节体细胞核生殖细胞的表观遗传重编程。

The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.

机构信息

The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.

Abstract

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5-11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.

摘要

诱导多能干细胞(iPSC)可以通过异位表达不同的转录因子,经典的 Oct4(也称为 Pou5f1)、Sox2、Klf4 和 Myc(简称 OSKM),从体细胞中获得。这一过程伴随着全基因组的表观遗传变化,但这些染色质修饰如何在生化上被确定需要进一步研究。在这里,我们在小鼠和人类中表明,组蛋白 H3 赖氨酸 27 甲基化(H3K27)去甲基酶 Utx(也称为 Kdm6a)调节多能性的有效诱导,而不是维持。缺乏 Utx 的小鼠胚胎干细胞可以执行谱系承诺,并有助于成年嵌合体动物;然而,缺乏 Utx 的体细胞不能有效地重新编程回到多能性的基础状态。Utx 直接与 OSK 重编程因子合作,并利用其组蛋白去甲基酶催化活性促进 iPSC 的形成。基因组分析表明,Utx 耗竭导致在经历重编程的体细胞中,H3K27me3 抑制性染色质去甲基化的异常动力学。后者直接阻碍了强有力的多能性促进基因模块(包括 Sall1、Sall4 和 Utf1)的去抑制,这些基因模块可以在 iPSC 形成中替代外源 OSK 补充。值得注意的是,Utx 保护了在胚胎第 10.5-11 天原始生殖细胞(PGC)中观察到的 H3K27me3 去甲基化的及时执行,而 Utx 缺陷的 PGC 在体内胚胎成熟过程中表现出细胞自主的异常表观遗传重编程动力学。随后,这在胚胎第 12.5 天破坏了 PGC 的发育,并导致从 Utx 敲除的多能细胞生成的小鼠嵌合体中的生殖系传递减少。因此,我们确定 Utx 是一种新型的介质,在多能性和生殖细胞发育的重新建立过程中具有不同的功能。此外,我们的研究结果强调了这样一个原则,即在体内生殖细胞重编程过程中介导抑制性染色质丧失的分子调节剂可以在体外重编程过程中被重新利用,以达到基础状态的多能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验