Suppr超能文献

确定性体细胞重编程涉及由 Myc 和受表观遗传驱动的模块控制的连续转录变化。

Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules.

机构信息

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel; New York Genome Center, New York, NY, USA.

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel.

出版信息

Cell Stem Cell. 2019 Feb 7;24(2):328-341.e9. doi: 10.1016/j.stem.2018.11.014. Epub 2018 Dec 13.

Abstract

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.

摘要

诱导多能干细胞(iPSC)重编程的表观遗传动力学在正确重编程的细胞中,在高分辨率和整个过程中仍然很大程度上未被定义。在这里,我们使用 Gatad2a-Mbd3/NuRD 耗尽和高效的重编程系统来表征将小鼠成纤维细胞转化为 iPSC。我们获得了基因表达、染色质结合、DNA 可及性和 DNA 甲基化水平的动态变化的无偏高分辨率分析。我们鉴定了两个不同且协同的转录模块,这些模块主导着成功的重编程,与细胞身份和生物合成基因有关。多能性模块由启动子的表观遗传修饰的动态变化以及 Oct4、Sox2 和 Klf4 的结合所控制,但不包括 Myc。某些增强子的早期 DNA 去甲基化前瞻性地标记了注定要重新编程的细胞。Myc 活性驱动必需的生物合成模块的表达,并与 tRNA 密码子使用的优化变化相关。我们的功能验证强调了相互交织的表观遗传和 Myc 控制的基本重构,这些重构迅速委托并推动确定性重编程向原始多能性发展。

相似文献

1
Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules.
Cell Stem Cell. 2019 Feb 7;24(2):328-341.e9. doi: 10.1016/j.stem.2018.11.014. Epub 2018 Dec 13.
2
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.
3
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
Nature. 2012 Aug 30;488(7413):652-5. doi: 10.1038/nature11333.
4
Chromatin-modifying enzymes as modulators of reprogramming.
Nature. 2012 Mar 4;483(7391):598-602. doi: 10.1038/nature10953.
5
An Unbiased Approach to Identifying Cellular Reprogramming-Inducible Enhancers.
Int J Mol Sci. 2024 Dec 6;25(23):13128. doi: 10.3390/ijms252313128.
6
Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4.
Stem Cell Res. 2017 Dec;25:88-97. doi: 10.1016/j.scr.2017.10.014. Epub 2017 Oct 26.
8
Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15.
9
Hepatitis B Virus x Protein Increases Cellular OCT3/4 and MYC and Facilitates Cellular Reprogramming.
Cell Reprogram. 2023 Oct;25(5):224-237. doi: 10.1089/cell.2023.0055. Epub 2023 Sep 26.

引用本文的文献

1
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
2
Proliferation history and transcription factor levels drive direct conversion to motor neurons.
Cell Syst. 2025 Apr 16;16(4):101205. doi: 10.1016/j.cels.2025.101205. Epub 2025 Mar 13.
3
20 years of stemness: From stem cells to hypertranscription and back.
Stem Cell Reports. 2025 Mar 11;20(3):102406. doi: 10.1016/j.stemcr.2025.102406. Epub 2025 Feb 6.
4
Nucleosome fibre topology guides transcription factor binding to enhancers.
Nature. 2025 Feb;638(8049):251-260. doi: 10.1038/s41586-024-08333-9. Epub 2024 Dec 18.
5
An Unbiased Approach to Identifying Cellular Reprogramming-Inducible Enhancers.
Int J Mol Sci. 2024 Dec 6;25(23):13128. doi: 10.3390/ijms252313128.
6
The emergence of Sox and POU transcription factors predates the origins of animal stem cells.
Nat Commun. 2024 Nov 14;15(1):9868. doi: 10.1038/s41467-024-54152-x.
7
Manipulating cell fate through reprogramming: approaches and applications.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.203090. Epub 2024 Sep 30.
8
Endogenous retroviral ERVH48-1 promotes human urine cell reprogramming.
Cell Regen. 2024 Sep 13;13(1):17. doi: 10.1186/s13619-024-00200-2.
9
TET activity safeguards pluripotency throughout embryonic dormancy.
Nat Struct Mol Biol. 2024 Oct;31(10):1625-1639. doi: 10.1038/s41594-024-01313-7. Epub 2024 May 23.
10
Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications.
Signal Transduct Target Ther. 2024 Apr 26;9(1):112. doi: 10.1038/s41392-024-01809-0.

本文引用的文献

1
Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency.
Cell Stem Cell. 2018 Sep 6;23(3):412-425.e10. doi: 10.1016/j.stem.2018.07.004. Epub 2018 Aug 16.
2
Chromatin Accessibility Dynamics during iPSC Reprogramming.
Cell Stem Cell. 2017 Dec 7;21(6):819-833.e6. doi: 10.1016/j.stem.2017.10.012.
3
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Cell. 2017 Jan 26;168(3):442-459.e20. doi: 10.1016/j.cell.2016.12.016. Epub 2017 Jan 19.
4
Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause.
Cell. 2016 Feb 11;164(4):668-80. doi: 10.1016/j.cell.2015.12.033.
5
Tracing dynamic changes of DNA methylation at single-cell resolution.
Cell. 2015 Sep 24;163(1):218-29. doi: 10.1016/j.cell.2015.08.046.
6
Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming.
Cell. 2015 Apr 23;161(3):555-568. doi: 10.1016/j.cell.2015.03.017. Epub 2015 Apr 16.
7
Genome-wide characterization of the routes to pluripotency.
Nature. 2014 Dec 11;516(7530):198-206. doi: 10.1038/nature14046.
9
A dual program for translation regulation in cellular proliferation and differentiation.
Cell. 2014 Sep 11;158(6):1281-1292. doi: 10.1016/j.cell.2014.08.011.
10
Stochasticity of metabolism and growth at the single-cell level.
Nature. 2014 Oct 16;514(7522):376-9. doi: 10.1038/nature13582. Epub 2014 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验