Suppr超能文献

基于加速度计的运动动力学预测用于平衡监测。

Accelerometry-based prediction of movement dynamics for balance monitoring.

机构信息

Department of Electronics, Computer Science and Systems (DEIS), University of Bologna, Bologna, Italy.

出版信息

Med Biol Eng Comput. 2012 Sep;50(9):925-36. doi: 10.1007/s11517-012-0940-6. Epub 2012 Jul 18.

Abstract

This paper proposes a 2D functional evaluation tool for estimating subject-specific body segment parameters, which uses a simple motor task (repeated sit-to-stand, rSTS), recorded with one single-axis accelerometer (SAA) per segment and a force plate (FP). After this preliminary estimation, the accelerometer alone is used to make quasi-real-time predictions of ground reaction force (anterior/posterior, F ( X ), and vertical, F ( Z ), components), center of pressure (CoP) and center of mass (CoM), during rSTS and postural oscillation in the sagittal plane. These predicted dynamic variables, as well as those obtained using anthropometric parameters derived from De Leva, were compared to actual FP outputs in terms of root mean-squared errors (RMSEs). Using De Leva's parameters in place of those estimated, RMSEs increase from 12 to 21 N (F ( X )), from 21 to 24 N (F ( Z )), and from 21.1 to 55.6 mm (CoP) in rSTS; similarly, RMSEs increase from 3.1 to 3.3 N (F ( X )) and from 5.5 to 6.6 mm (CoP) in oscillatory trials. A telescopic inverted pendulum model was adopted to analyze the balance control in rSTS using only predicted CoP and CoM. Results suggest that one SAA per segment is sufficient to predict the dynamics of a biomechanical model of any degrees of freedom.

摘要

本文提出了一种 2D 功能评估工具,用于估计特定于主体的身体段参数,该工具使用每个段的一个单轴加速度计(SAA)和一个力板(FP)记录简单的运动任务(重复坐站,rSTS)。在初步估计之后,仅使用加速度计即可在 rSTS 和矢状面中的姿势摆动期间对地面反作用力(前/后,F(X)和垂直,F(Z)分量)、质心(CoP)和质心(CoM)进行准实时预测。这些预测的动态变量以及使用源自 De Leva 的人体测量参数获得的动态变量,在均方根误差(RMSE)方面与实际 FP 输出进行了比较。使用 De Leva 的参数代替估计的参数,RMSE 在 rSTS 中从 12 增加到 21N(F(X)),从 21 增加到 24N(F(Z)),从 21.1 增加到 55.6mm(CoP);同样,在振荡试验中,RMSE 从 3.1 增加到 3.3N(F(X)),从 5.5 增加到 6.6mm(CoP)。采用伸缩式倒立摆模型,仅使用预测的 CoP 和 CoM 来分析 rSTS 中的平衡控制。结果表明,每个段一个 SAA 足以预测任何自由度的生物力学模型的动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验