Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America.
PLoS One. 2012;7(7):e40048. doi: 10.1371/journal.pone.0040048. Epub 2012 Jul 3.
Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C β activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCβ activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.
心肌肥厚是心血管发病率和死亡率的一个明确的危险因素。G(q/11)介导的信号转导的激活对于压力超负荷诱导的心肌细胞 (CM) 肥厚的发展是必需的。我们之前的研究表明,在 G 蛋白信号转导调节因子中,RGS2 选择性地抑制 G(q/11)信号及其在分离的 CM 中的肥厚作用。在这项研究中,我们生成了具有 CM 特异性、条件性 RGS2 表达的转基因小鼠 (dTG),以研究 RGS2 过表达是否可用于体内减轻 G(q/11)介导的信号转导和肥厚。无论 TAC 持续时间 (1-8 周) 和 RGS2 表达的时间 (从出生或成年开始) 如何,转基因小鼠的横主动脉缩窄 (TAC) 诱导的心室质量和 ANF 表达的升高以及相应的血流动力学变化与野生型 (WT) 相似。内皮素-1 诱导的 G(q/11)介导的磷脂酶 Cβ 活性在心室和心房附件中的抑制表明转基因 RGS2 的功能。然而,转基因 RGS2 对 G(q/11)介导的 PLCβ 激活的抑制作用在心室和心房之间存在差异:(i) 在假手术 dTG 小鼠中,其抑制作用的幅度在心室中比在心房中不那么明显,以及 (ii) 在 TAC 后,G(q/11)信号的负调节在心室中不存在,但在心房中完全保留。这些差异不能用表达水平的差异来解释,包括 TAC 后左心室和心房中明显的 RGS2 下调。其他 G(q/11)调节 RGS 蛋白 (RGS4、RGS5、RGS6) 的反调节变化和随机插入也被排除为潜在原因。总之,尽管有充分的证据表明 RGS2 在 CM 中负调节 G(q/11)信号转导和肥厚,但体内转基因小鼠的 CM 特异性 RGS2 过表达并未导致压力超负荷时心室 G(q/11)介导的信号转导和肥厚减轻。此外,我们的研究表明,在调节 RGS2 功能方面存在室间差异,并表明在体内减轻心房 G(q/11)信号方面,新型转基因模型具有潜在的未来应用价值。