Department of Botany and Microbiology, University of Oklahoma, Norman, 73019, USA.
Annu Rev Microbiol. 2012;66:429-52. doi: 10.1146/annurev-micro-090110-102844. Epub 2012 Jul 9.
Syntrophy is a tightly coupled mutualistic interaction between hydrogen-/formate-producing and hydrogen-/formate-using microorganisms that occurs throughout the microbial world. Syntrophy is essential for global carbon cycling, waste decomposition, and biofuel production. Reverse electron transfer, e.g., the input of energy to drive critical redox reactions, is a defining feature of syntrophy. Genomic analyses indicate multiple systems for reverse electron transfer, including ion-translocating ferredoxin:NAD(+) oxidoreductase and hydrogenases, two types of electron transfer flavoprotein:quinone oxidoreductases, and other quinone reactive complexes. Confurcating hydrogenases that couple the favorable production of hydrogen from reduced ferredoxin with the unfavorable production of hydrogen from NADH are present in almost all syntrophic metabolizers, implicating their critical role in syntrophy. Transcriptomic analysis shows upregulation of many genes without assigned functions in the syntrophic lifestyle. High-throughput technologies provide insight into the mechanisms used to establish and maintain syntrophic consortia and conserve energy from reactions that operate close to thermodynamic equilibrium.
共生是一种在产氢/甲酸盐和利用氢/甲酸盐的微生物之间紧密偶联的互利共生相互作用,存在于整个微生物世界中。共生对于全球碳循环、废物分解和生物燃料生产至关重要。电子的逆向传递,例如输入能量以驱动关键的氧化还原反应,是共生的一个定义特征。基因组分析表明存在多种逆向电子传递系统,包括离子转运的铁氧还蛋白:NAD(+)氧化还原酶和氢化酶、两种类型的电子传递黄素蛋白:醌氧化还原酶,以及其他醌反应复合物。在几乎所有的协同代谢物中都存在能够将还原型铁氧还蛋白中有利的氢气生成与 NADH 中不利的氢气生成偶联起来的交错氢化酶,这表明其在共生中的关键作用。转录组分析表明,许多具有未分配功能的基因在共生生活方式中被上调。高通量技术为建立和维持共生联合体以及从接近热力学平衡的反应中节约能量所使用的机制提供了深入的了解。