Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, 1 rue Jussieu, 75005 Paris, France.
Nat Commun. 2012 Jul 17;3:962. doi: 10.1038/ncomms1964.
A photon interacts efficiently with an atom when its frequency corresponds exactly to the energy between two eigenstates. But at the nanoscale, homogeneous and inhomogeneous broadenings strongly hinder the ability of solid-state systems to absorb, scatter or emit light. By compensating the impedance mismatch between visible wavelengths and nanometre-sized objects, optical antennas can enhance light-matter interactions over a broad frequency range. Here we use a DNA template to introduce a single dye molecule in gold particle dimers that act as antennas for light with spontaneous emission rates enhanced by up to two orders of magnitude and single photon emission statistics. Quantitative agreement between measured rate enhancements and theoretical calculations indicate a nanometre control over the emitter-particle position while 10 billion copies of the target geometry are synthesized in parallel. Optical antennas can thus tune efficiently the photo-physical properties of nano-objects by precisely engineering their electromagnetic environment.
当光子的频率与两个本征态之间的能量完全匹配时,它会与原子有效地相互作用。但是在纳米尺度上,均匀和非均匀展宽强烈阻碍了固态系统吸收、散射或发射光的能力。通过补偿可见光波长与纳米尺寸物体之间的阻抗失配,光学天线可以在很宽的频率范围内增强光与物质的相互作用。在这里,我们使用 DNA 模板在金粒子二聚体中引入单个染料分子,这些二聚体作为天线,将自发辐射速率提高了两个数量级,并具有单光子发射统计特性。测量的速率增强与理论计算之间的定量一致性表明,对发射器-粒子位置的纳米级控制,同时可以并行合成 100 亿个目标几何形状的拷贝。因此,光学天线可以通过精确地设计其电磁环境来有效地调整纳米物体的光物理性质。