Suppr超能文献

附加寿命表变量对超额死亡率估计的影响。

The impact of additional life-table variables on excess mortality estimates.

机构信息

Aix-Marseille Univ, UMR 912, SESSTIM, F-13284, Marseille, France.

出版信息

Stat Med. 2012 Dec 30;31(30):4219-30. doi: 10.1002/sim.5493. Epub 2012 Jul 17.

Abstract

Regression-based relative survival models are commonly used in population-based cancer studies to estimate the real impact on the excess mortality of covariates that influence overall mortality. Usually, the mortality observed in a study cohort is corrected by the expected mortality hazard in the general population, which is given by life tables provided by national statistics institutes. These life tables are stratified by age, sex, calendar year, and, sometimes, other demographic data (ethnicity, deprivation, and others). However, in most cases, the same demographic data are not available for the study cohort and the general population; this leads to differences between the expected mortality of the general population and that of the study cohort. More generally, the absence of some demographic variables in life tables may introduce a measurement bias into the estimation of the excess mortality. In the present article, we used a simulation approach with different plausible scenarios to evaluate the impact of an additional life-table variable on excess mortality estimates and study the extent and the direction of the biases in estimating the effect of each covariate on the excess mortality. We showed that the use of life table that lacks stratification by a variable present in the excess hazard model results in a measurement bias not only in the estimate of the effect of this variable but also, to a lesser extent, in the estimates of the effects of the other covariates included in the model. We also demonstrated this measurement bias by a population-based colorectal cancer analysis.

摘要

基于回归的相对生存模型常用于基于人群的癌症研究中,以估计影响总体死亡率的协变量对超额死亡率的实际影响。通常,通过使用由国家统计机构提供的生命表来校正研究队列中观察到的死亡率,生命表给出了一般人群的预期死亡率风险。这些生命表按年龄、性别、日历年份分层,有时还按其他人口统计学数据(种族、贫困等)分层。然而,在大多数情况下,研究队列和一般人群没有相同的人口统计学数据;这导致一般人群的预期死亡率与研究队列的预期死亡率之间存在差异。更普遍地说,生命表中缺少某些人口统计学变量可能会导致对超额死亡率的估计产生测量偏差。在本文中,我们使用不同的似是而非的情景模拟方法来评估额外的生命表变量对超额死亡率估计的影响,并研究在估计每个协变量对超额死亡率的影响时,偏差的程度和方向。我们表明,在超额危险模型中存在一个变量而生命表中没有分层,这不仅会导致该变量效应估计的测量偏差,而且在模型中包含的其他协变量的效应估计中也会导致一定程度的测量偏差。我们还通过基于人群的结直肠癌分析证明了这种测量偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验