Suppr超能文献

中国大陆县级手足口病的风险评估与制图:时空零膨胀贝叶斯层次模型。

Risk Assessment and Mapping of Hand, Foot, and Mouth Disease at the County Level in Mainland China Using Spatiotemporal Zero-Inflated Bayesian Hierarchical Models.

机构信息

State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.

School of Geoscience and Technology, Southwest Petroleum University, Sichuan 610500, China.

出版信息

Int J Environ Res Public Health. 2018 Jul 12;15(7):1476. doi: 10.3390/ijerph15071476.

Abstract

Hand, foot, and mouth disease (HFMD) is a worldwide infectious disease, prominent in China. China's HFMD data are sparse with a large number of observed zeros across locations and over time. However, no previous studies have considered such a zero-inflated problem on HFMD's spatiotemporal risk analysis and mapping, not to mention for the entire Mainland China at county level. Monthly county-level HFMD cases data combined with related climate and socioeconomic variables were collected. We developed four models, including spatiotemporal Poisson, negative binomial, zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB) models under the Bayesian hierarchical modeling framework to explore disease spatiotemporal patterns. The results showed that the spatiotemporal ZINB model performed best. Both climate and socioeconomic variables were identified as significant risk factors for increasing HFMD incidence. The relative risk () of HFMD at the local scale showed nonlinear temporal trends and was considerably spatially clustered in Mainland China. The first complete county-level spatiotemporal relative risk maps of HFMD were generated by this study. The new findings provide great potential for national county-level HFMD prevention and control, and the improved spatiotemporal zero-inflated model offers new insights for epidemic data with the zero-inflated problem in environmental epidemiology and public health.

摘要

手足口病(HFMD)是一种全球性传染病,在中国尤为突出。中国的 HFMD 数据稀缺,在不同地点和不同时间存在大量观察到的零值。然而,以前的研究尚未考虑到 HFMD 的时空风险分析和制图中的这种零膨胀问题,更不用说在整个中国大陆县级层面上了。本研究收集了县级月度 HFMD 病例数据以及相关气候和社会经济变量。我们开发了四种模型,包括时空泊松模型、负二项式模型、零膨胀泊松模型(ZIP)和零膨胀负二项式模型(ZINB),在贝叶斯层次建模框架下探索疾病的时空模式。结果表明,时空 ZINB 模型表现最佳。气候和社会经济变量均被确定为增加 HFMD 发病率的重要风险因素。HFMD 在局部尺度上的相对风险(RR)呈现出非线性的时间趋势,并且在中国大陆地区存在显著的空间聚集性。本研究首次生成了中国大陆县级 HFMD 时空相对风险的完整地图。这些新发现为国家县级 HFMD 预防和控制提供了巨大的潜力,而改进的时空零膨胀模型为环境流行病学和公共卫生中具有零膨胀问题的传染病数据提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a083/6069258/69d13562346b/ijerph-15-01476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验