Upfill-Brown Alexander M, Lyons Hil M, Pate Muhammad A, Shuaib Faisal, Baig Shahzad, Hu Hao, Eckhoff Philip A, Chabot-Couture Guillaume
Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA.
BMC Med. 2014 Jun 4;12:92. doi: 10.1186/1741-7015-12-92.
One of the challenges facing the Global Polio Eradication Initiative is efficiently directing limited resources, such as specially trained personnel, community outreach activities, and satellite vaccinator tracking, to the most at-risk areas to maximize the impact of interventions. A validated predictive model of wild poliovirus circulation would greatly inform prioritization efforts by accurately forecasting areas at greatest risk, thus enabling the greatest effect of program interventions.
Using Nigerian acute flaccid paralysis surveillance data from 2004-2013, we developed a spatial hierarchical Poisson hurdle model fitted within a Bayesian framework to study historical polio caseload patterns and forecast future circulation of type 1 and 3 wild poliovirus within districts in Nigeria. A Bayesian temporal smoothing model was applied to address data sparsity underlying estimates of covariates at the district level.
We find that calculated vaccine-derived population immunity is significantly negatively associated with the probability and number of wild poliovirus case(s) within a district. Recent case information is significantly positively associated with probability of a case, but not the number of cases. We used lagged indicators and coefficients from the fitted models to forecast reported cases in the subsequent six-month periods. Over the past three years, the average predictive ability is 86 ± 2% and 85 ± 4% for wild poliovirus type 1 and 3, respectively. Interestingly, the predictive accuracy of historical transmission patterns alone is equivalent (86 ± 2% and 84 ± 4% for type 1 and 3, respectively). We calculate uncertainty in risk ranking to inform assessments of changes in rank between time periods.
The model developed in this study successfully predicts districts at risk for future wild poliovirus cases in Nigeria. The highest predicted district risk was 12.8 WPV1 cases in 2006, while the lowest district risk was 0.001 WPV1 cases in 2013. Model results have been used to direct the allocation of many different interventions, including political and religious advocacy visits. This modeling approach could be applied to other vaccine preventable diseases for use in other control and elimination programs.
全球根除脊髓灰质炎行动面临的挑战之一是如何有效地将有限资源,如经过专门培训的人员、社区外展活动以及流动疫苗接种员追踪,分配到风险最高的地区,以最大限度地提高干预措施的效果。一个经过验证的野生脊髓灰质炎病毒传播预测模型能够通过准确预测风险最高的地区,极大地为资源优先分配工作提供信息,从而使项目干预措施发挥最大效果。
利用2004年至2013年尼日利亚急性弛缓性麻痹监测数据,我们开发了一个在贝叶斯框架内拟合的空间分层泊松障碍模型,以研究脊髓灰质炎病例数的历史模式,并预测尼日利亚各地区1型和3型野生脊髓灰质炎病毒未来的传播情况。应用贝叶斯时间平滑模型来解决地区层面协变量估计中存在的数据稀疏问题。
我们发现,计算得出的疫苗衍生群体免疫力与一个地区内野生脊髓灰质炎病毒病例的发生概率和病例数显著负相关。近期病例信息与病例发生概率显著正相关,但与病例数无关。我们使用拟合模型中的滞后指标和系数来预测随后六个月内报告的病例数。在过去三年中,1型和3型野生脊髓灰质炎病毒的平均预测能力分别为86±2%和85±4%。有趣的是,仅历史传播模式的预测准确率相当(1型和3型分别为86±2%和84±4%)。我们计算风险排名的不确定性,以便为不同时间段之间排名变化的评估提供信息。
本研究开发的模型成功预测了尼日利亚未来可能出现野生脊髓灰质炎病例的地区。预测的最高地区风险是2006年出现12.8例1型野生脊髓灰质炎病毒病例,而最低地区风险是2013年出现0.001例1型野生脊髓灰质炎病毒病例。模型结果已被用于指导多种不同干预措施的分配,包括政治和宗教宣传访问。这种建模方法可应用于其他疫苗可预防疾病,用于其他控制和消除项目。